Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
J Fungi (Basel) ; 8(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35050001

ABSTRACT

The prevalence of antifungal resistance in Candida glabrata, especially against azole drugs, results in difficult-to-treat and potentially life-threatening infections. Understanding the molecular basis of azole resistance in C. glabrata is crucial to designing more suitable therapeutic strategies. In this study, the role of the transcription factor encoded by ORF CAGL0B03421g, here denominated as CgMar1 (Multiple Azole Resistance 1), in azole susceptibility was explored. Using RNA-sequencing, CgMar1 was found to regulate 337 genes under fluconazole stress, including several related to lipid biosynthesis pathways. In this context, CgMar1 and its target CgRSB1, encoding a predicted sphingoid long-chain base efflux transporter, were found to contribute to plasma membrane sphingolipid incorporation and membrane permeability, decreasing fluconazole accumulation. CgMar1 was found to associate with the promoter of CgRSB1, which contains two instances of the CCCCTCC consensus, found to be required for CgRSB1 activation during fluconazole stress. Altogether, a regulatory pathway modulating azole susceptibility in C. glabrata is proposed, resulting from what appears to be a neofunctionalization of a Hap1-like transcription factor.

3.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34791169

ABSTRACT

Candida metapsilosis is a member of the Candida parapsilosis species complex, a group of opportunistic human pathogens. Of all the members of this complex, C. metapsilosis is the least virulent, and accounts for a small proportion of invasive Candida infections. Previous studies established that all C. metapsilosis isolates are hybrids, originating from a single hybridization event between two lineages, parent A and parent B. Here, we use MinION and Illumina sequencing to characterize a C. metapsilosis isolate that originated from a separate hybridization. One of the parents of the new isolate is very closely related to parent A. However, the other parent (parent C) is not the same as parent B. Unlike C. metapsilosis AB isolates, the C. metapsilosis AC isolate has not undergone introgression at the mating type-like locus. In addition, the A and C haplotypes are not fully collinear. The C. metapsilosis AC isolate has undergone loss of heterozygosity with a preference for haplotype A, indicating that this isolate is in the early stages of genome stabilization.


Subject(s)
Candida parapsilosis , Candidiasis , Antifungal Agents , Candida/genetics , Candida parapsilosis/genetics , Candidiasis/genetics , Genome , Humans , Hybridization, Genetic
4.
Commun Biol ; 4(1): 886, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285314

ABSTRACT

Candida glabrata is an opportunistic pathogen that adheres to human epithelial mucosa and forms biofilm to cause persistent infections. In this work, Single-cell Force Spectroscopy (SCFS) was used to glimpse at the adhesive properties of C. glabrata as it interacts with clinically relevant surfaces, the first step towards biofilm formation. Following a genetic screening, RNA-sequencing revealed that half of the entire transcriptome of C. glabrata is remodeled upon biofilm formation, around 40% of which under the control of the transcription factors CgEfg1 and CgTec1. Using SCFS, it was possible to observe that CgEfg1, but not CgTec1, is necessary for the initial interaction of C. glabrata cells with both abiotic surfaces and epithelial cells, while both transcription factors orchestrate biofilm maturation. Overall, this study characterizes the network of transcription factors controlling massive transcriptional remodelling occurring from the initial cell-surface interaction to mature biofilm formation.


Subject(s)
Biofilms/growth & development , Candida glabrata/physiology , Genome, Fungal , Transcription Factors/genetics , Candida glabrata/genetics , Transcription Factors/metabolism
5.
Article in English | MEDLINE | ID: mdl-32571817

ABSTRACT

The ability to acquire azole resistance is an emblematic trait of the fungal pathogen Candida glabrata Understanding the molecular basis of azole resistance in this pathogen is crucial for designing more suitable therapeutic strategies. This study shows that the C. glabrata transcription factor (TF) CgRpn4 is a determinant of azole drug resistance. RNA sequencing during fluconazole exposure revealed that CgRpn4 regulates the expression of 212 genes, activating 80 genes and repressing, likely in an indirect fashion, 132 genes. Targets comprise several proteasome and ergosterol biosynthesis genes, including ERG1, ERG2, ERG3, and ERG11 The localization of CgRpn4 to the nucleus increases upon fluconazole stress. Consistent with a role in ergosterol and plasma membrane homeostasis, CgRpn4 is required for the maintenance of ergosterol levels upon fluconazole stress, which is associated with a role in the upkeep of cell permeability and decreased intracellular fluconazole accumulation. We provide evidence that CgRpn4 directly regulates ERG11 expression through the TTGCAAA binding motif, reinforcing the relevance of this regulatory network in azole resistance. In summary, CgRpn4 is a new regulator of the ergosterol biosynthesis pathway in C. glabrata, contributing to plasma membrane homeostasis and, thus, decreasing azole drug accumulation.


Subject(s)
Candida glabrata , Fluconazole , Transcription Factors , Antifungal Agents/pharmacology , Candida glabrata/genetics , Candida glabrata/metabolism , Cell Membrane/metabolism , Drug Resistance, Fungal/genetics , Ergosterol , Fluconazole/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Permeability , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Genome Res ; 30(5): 684-696, 2020 05.
Article in English | MEDLINE | ID: mdl-32424070

ABSTRACT

Centromeres pose an evolutionary paradox: strongly conserved in function but rapidly changing in sequence and structure. However, in the absence of damage, centromere locations are usually conserved within a species. We report here that isolates of the pathogenic yeast species Candida parapsilosis show within-species polymorphism for the location of centromeres on two of its eight chromosomes. Its old centromeres have an inverted-repeat (IR) structure, whereas its new centromeres have no obvious structural features but are located within 30 kb of the old site. Centromeres can therefore move naturally from one chromosomal site to another, apparently spontaneously and in the absence of any significant changes in DNA sequence. Our observations are consistent with a model in which all centromeres are genetically determined, such as by the presence of short or long IRs or by the ability to form cruciforms. We also find that centromeres have been hotspots for genomic rearrangements in the C. parapsilosis clade.


Subject(s)
Candida parapsilosis/genetics , Centromere , Centromere/chemistry , Chromatin Immunoprecipitation Sequencing , Chromosomes, Fungal , Evolution, Molecular , Genomics , Inverted Repeat Sequences , Saccharomycetales
7.
Nat Med ; 26(1): 59-64, 2020 01.
Article in English | MEDLINE | ID: mdl-31907459

ABSTRACT

The intestinal microbiota is a complex community of bacteria, archaea, viruses, protists and fungi1,2. Although the composition of bacterial constituents has been linked to immune homeostasis and infectious susceptibility3-7, the role of non-bacterial constituents and cross-kingdom microbial interactions in these processes is poorly understood2,8. Fungi represent a major cause of infectious morbidity and mortality in immunocompromised individuals, although the relationship of intestinal fungi (that is, the mycobiota) with fungal bloodstream infections remains undefined9. We integrated an optimized bioinformatics pipeline with high-resolution mycobiota sequencing and comparative genomic analyses of fecal and blood specimens from recipients of allogeneic hematopoietic cell transplant. Patients with Candida bloodstream infection experienced a prior marked intestinal expansion of pathogenic Candida species; this expansion consisted of a complex dynamic between multiple species and subspecies with a stochastic translocation pattern into the bloodstream. The intestinal expansion of pathogenic Candida spp. was associated with a substantial loss in bacterial burden and diversity, particularly in the anaerobes. Thus, simultaneous analysis of intestinal fungi and bacteria identifies dysbiosis states across kingdoms that may promote fungal translocation and facilitate invasive disease. These findings support microbiota-driven approaches to identify patients at risk of fungal bloodstream infections for pre-emptive therapeutic intervention.


Subject(s)
Candidiasis, Invasive/microbiology , Intestines/microbiology , Mycobiome , Bacteria/isolation & purification , Candida/pathogenicity , Cross Infection/blood , Cross Infection/microbiology , Feces/microbiology , Hematopoietic Stem Cell Transplantation , Humans , Species Specificity , Transplantation, Homologous
9.
mSphere ; 4(3)2019 06 26.
Article in English | MEDLINE | ID: mdl-31243082

ABSTRACT

Fatty acids have known antifungal effects and are used in over-the-counter topical treatments. Screening of a collection of gene knockouts in Candida albicans revealed that one strain, carrying a deletion of the transcription factor DAL81, is very susceptible to the medium-chain fatty acid undecanoic acid. However, reintroducing DAL81 does not restore resistance, and editing DAL81 in a different background does not introduce sensitivity. Whole-genome sequencing revealed that the C. albicansdal81Δ/Δ strain has an extra copy of chromosomes 5 and 7. Reversion to resistance to undecanoic acid was induced by growing the sensitive strain in yeast extract-peptone-dextrose with 60 µg/ml undecanoic acid for up to 9 days. Nine isolates that regained some resistance to undecanoic acid lost one copy of chromosome 7. The copy number of chromosome 5 does not appear to affect resistance to fatty acids. Moreover, the sensitivity may be related to having two copies of haplotype B of chromosome 7. In addition, we find that C. albicans strain SN152, used to delete DAL81 and many other genes, has undergone a major loss of heterozygosity event on chromosome 2 and a smaller one on chromosome 3.IMPORTANCE Aneuploidy (changes in chromosome number) and loss of heterozygosity (LOH) occur frequently in the human-pathogenic yeast Candida albicans and are associated with adaptation to stress and to antifungal drugs. Aneuploidy and LOH can also be induced during laboratory manipulations, such as during genetic transformation. We find that C. albicans strain SN152, commonly used to generate gene deletions, has undergone a major LOH event on chromosome 2. One deletion strain generated in this background has acquired extra copies of chromosomes 5 and 7. We find that trisomy (three copies) of chromosome 7 is associated with sensitivity to fatty acids.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Chromosomes, Fungal , Fatty Acids/pharmacology , Trisomy , Genome, Fungal , Loss of Heterozygosity , Transcription Factors/genetics
10.
mSphere ; 3(6)2018 11 07.
Article in English | MEDLINE | ID: mdl-30404939

ABSTRACT

The unfolded protein response (UPR) in the endoplasmic reticulum (ER) is well conserved in eukaryotes from metazoa to yeast. The transcription factor HAC1 is a major regulator of the UPR in many eukaryotes. Deleting HAC1 in the yeast Candida parapsilosis rendered cells more sensitive to DTT, a known inducer of the UPR. The deletion strain was also sensitive to Congo red, calcofluor white, and the antifungal drug ketoconazole, indicating that HAC1 has a role in cell wall maintenance. Transcriptomic analysis revealed that treatment of the wild type with DTT resulted in the increased expression of 368 genes. Comparison with mutant cells treated with DTT reveals that expression of 137 of these genes requires HAC1 Enriched GO term analysis includes response to ER stress, cell wall biogenesis and glycosylation. Orthologs of many of these are associated with UPR in Saccharomyces cerevisiae and Candida albicans Unconventional splicing of an intron from HAC1 mRNA is required to produce a functional transcription factor. The spliced intron varies in length from 19 bases in C. albicans to 379 bases in Candida glabrata, but has not been previously identified in Candida parapsilosis and related species. We used RNA-seq data and in silico analysis to identify the HAC1 intron in 12 species in the CTG-Ser1 clade. We show that the intron has undergone major contractions and expansions in this clade, reaching up to 848 bases. Exposure to DTT induced splicing of the long intron in C. parapsilosisHAC1, inducing the UPR.IMPORTANCE The unfolded protein response (UPR) responds to the build-up of misfolded proteins in the endoplasmic reticulum. The UPR has wide-ranging functions from fungal pathogenesis to applications in biotechnology. The UPR is regulated through the splicing of an unconventional intron in the HAC1 gene. This intron has been described in many fungal species and is of variable length. Until now it was believed that some members of the CTG-Ser1 clade such as C. parapsilosis did not contain an intron in HAC1, suggesting that the UPR was regulated in a different manner. Here we demonstrate that HAC1 plays an important role in regulating the UPR in C. parapsilosis We also identified an unusually long intron (626 bp) in C. parapsilosisHAC1 Further analysis showed that HAC1 orthologs in several species in the CTG-Ser1 clade contain long introns.


Subject(s)
Candida parapsilosis/genetics , Introns , Transcription Factors/genetics , Computational Biology , Gene Expression Profiling , Sequence Analysis, RNA
11.
mSphere ; 3(2)2018.
Article in English | MEDLINE | ID: mdl-29564399

ABSTRACT

Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.

SELECTION OF CITATIONS
SEARCH DETAIL
...