Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 173860, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38871321

ABSTRACT

This comprehensive research investigates heavy metal contamination in the rapidly developing town of Jebba in north-central Nigeria, which is essential to the nation's economy due to its agro-allied and non-agro-allied businesses. The research focuses on soil samples, collecting and analyzing 137 surface soil samples to assess the presence of 25 distinct metals. After statistical analysis and simple mathematical models are applied to the data, the amounts of harmful metals and their probable causes are revealed. The study identifies geogenic and anthropogenic origins of toxic metals, with some elements exceeding average crustal concentrations. Non-homogeneous metal dispersion is shown in the region by spatial distribution maps. The geo-accumulation index reflects various amounts of contamination, with particular metals posing significant threats to the ecosystem. Additionally, the study compares results with worldwide studies, revealing distinct pollution patterns in Jebba. The research delves into weathering processes, employing chemical indices to quantify the level of soil weathering and uncovering a prominent role of geogenic activities in metal release. Bivariate correlation and principal component analysis indicate links and possibly common sources among heavy metals, emphasizing anthropogenic contributions. In addition, assessments of ecological and medical risks are conducted, indicating possible threats to human wellness and the ecosystem. Children, in particular, are regarded as especially vulnerable to non-carcinogenic health concerns, with various heavy metals posing potential threats through diverse exposure routes. The study emphasizes the need to implement remediation procedures to address the risks to public health and the environment related to metal pollution.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Nigeria , Soil Pollutants/analysis , Metals, Heavy/analysis , Humans , Risk Assessment , Soil/chemistry
2.
Heliyon ; 9(11): e22451, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034673

ABSTRACT

Assessment of activity levels of radionuclides that exist in soil, granite, and charnockite rock samples is very crucial because it exhibits an enhanced elemental concentration of uranium (U) and thorium (Th) contributing higher natural background activity than usual in the environment and it may cause health risk to human health through the external and internal exposure. This study determined the radioactivity levels of 238U, 232Th, and 40K radionuclides in soil, granite, and charnockite rock samples collected from selected fields in Ekiti State, Nigeria using Caesium iodide CsI(Tl) scintillation gamma spectrometer. It also evaluated indices of the radiological parameters consisting of radium equivalent activity (Raeq), absorbed dose rate (DR), annual effective dose equivalent (AEDE), internal hazard index (Hin), and excess lifetime cancer risk (ELCR). The calculated average activity concentrations of 238U, 232Th, and 40K are 30.40 ± 0.71 Bq kg-1, 3.31 ± 0.05 Bq kg-1, and 222.25 ± 14.72 Bq kg-1, respectively, which were lower than their respective world average values. Comparatively, potassium concentrations in these collected samples have a higher value than concentrations of uranium and thorium (40K > 238U > 232Th). All the evaluated values of the radiological parameters (except DR) of the appraised radionuclides were below the global permissible limits. The granite rocks, charnockite rocks, and soils from Ekiti State in Nigeria do not pose any hazardous risk to humans, but continued monitoring is necessary when these materials are used as building materials, which cause long-term radiation exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...