Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
iScience ; 24(9): 102941, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34368648

ABSTRACT

Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic.

2.
Viruses ; 13(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34452521

ABSTRACT

Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.


Subject(s)
Horse Diseases/prevention & control , Influenza A Virus, H3N8 Subtype/immunology , Influenza A Virus, H7N7 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/veterinary , Animals , Antibodies, Viral/immunology , Horse Diseases/immunology , Horse Diseases/virology , Horses , Influenza A Virus, H3N8 Subtype/genetics , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/physiology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
3.
Cell Rep Med ; 2(3): 100218, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33649747

ABSTRACT

SARS-CoV-2 infection results in viral burden in the respiratory tract, enabling transmission and leading to substantial lung pathology. The 1212C2 fully human monoclonal antibody was derived from an IgM memory B cell of a COVID-19 patient, has high affinity for the Spike protein receptor binding domain, neutralizes SARS-CoV-2, and exhibits in vivo prophylactic and therapeutic activity in hamsters when delivered intraperitoneally, reducing upper and lower respiratory viral burden and lung pathology. Inhalation of nebulized 1212C2 at levels as low as 0.6 mg/kg, corresponding to 0.03 mg/kg lung-deposited dose, reduced the viral burden below the detection limit and mitigated lung pathology. The therapeutic efficacy of an exceedingly low dose of inhaled 1212C2 supports the rationale for local lung delivery for dose-sparing benefits, as compared to the conventional parenteral route of administration. These results suggest that the clinical development of 1212C2 formulated and delivered via inhalation for the treatment of SARS-CoV-2 infection should be considered.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , Administration, Inhalation , Animals , Antibodies, Monoclonal/classification , Antibodies, Monoclonal/immunology , COVID-19/virology , Cricetinae , Disease Models, Animal , Epitope Mapping , Epitopes/immunology , Female , Humans , Immunoglobulin M/immunology , Male , Memory B Cells/cytology , Memory B Cells/metabolism , Middle Aged , Neutralization Tests , Phylogeny , Protein Domains/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
4.
J Virol Methods ; 290: 114084, 2021 04.
Article in English | MEDLINE | ID: mdl-33513380

ABSTRACT

The use of monoclonal neutralizing antibodies (mNAbs) is being actively pursued as a viable intervention for the treatment of Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) infection and associated coronavirus disease 2019 (COVID-19). While highly potent mNAbs have great therapeutic potential, the ability of the virus to mutate and escape recognition and neutralization of mNAbs represents a potential problem in their use for the therapeutic management of SARS-CoV-2. Studies investigating natural or mNAb-induced antigenic variability in the receptor binding domain (RBD) of SARS-CoV-2 Spike (S) glycoprotein, and their effects on viral fitness are still rudimentary. In this manuscript we described experimental approaches for the selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants (MARMs) in cultured cells. The ability to study SARS-CoV-2 antigenic drift under selective immune pressure by mNAbs is important for the optimal implementation of mNAbs for the therapeutic management of COVID-19. This will help to identify essential amino acid residues in the viral S glycoprotein required for mNAb-mediated inhibition of viral infection, to predict potential natural drift variants that could emerge upon implementation of therapeutic mNAbs, as well as vaccine prophylactic treatments for SARS-CoV-2 infection. Additionally, it will also enable the assessment of MARM viral fitness and its potential to induce severe infection and associated COVID-19 disease.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigenic Variation/genetics , Drug Resistance, Viral/genetics , SARS-CoV-2/genetics , Selection, Genetic , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Binding Sites/genetics , Binding Sites/immunology , COVID-19/virology , Chlorocebus aethiops , Humans , Phenotype , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Drug Treatment
5.
J Virol Methods ; 287: 113995, 2021 01.
Article in English | MEDLINE | ID: mdl-33068703

ABSTRACT

Towards the end of 2019, a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), genetically similar to severe acute respiratory syndrome coronavirus (SARS-CoV), emerged in Wuhan, Hubei province of China, and has been responsible for coronavirus disease 2019 (COVID-19) in humans. Since its first report, SARS-CoV-2 has resulted in a global pandemic, with over 10 million human infections and over 560,000 deaths reported worldwide at the end of June 2020. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines and/or antivirals licensed against SARS-CoV-2. The high economical and health impacts of SARS-CoV-2 has placed global pressure on the scientific community to identify effective prophylactic and therapeutic treatments for SARS-CoV-2 infection and associated COVID-19 disease. While some compounds have been already reported to reduce SARS-CoV-2 infection and a handful of monoclonal antibodies (mAbs) have been described that neutralize SARS-CoV-2, there is an urgent need for the development and standardization of assays which can be used in high through-put screening (HTS) settings to identify new antivirals and/or neutralizing mAbs against SARS-CoV-2. Here, we described a rapid, accurate, and highly reproducible plaque reduction microneutralization (PRMNT) assay that can be quickly adapted for the identification and characterization of both neutralizing mAbs and antivirals against SARS-CoV-2. Importantly, our MNA is compatible with HTS settings to interrogate large and/or complex libraries of mAbs and/or antivirals to identify those with neutralizing and/or antiviral activity, respectively, against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Neutralization Tests/methods , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Chlorocebus aethiops , High-Throughput Screening Assays , Humans , Vero Cells , Viral Plaque Assay , Virus Replication/drug effects
6.
Nat Commun ; 11(1): 6122, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257679

ABSTRACT

Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Brain/immunology , Brain/pathology , Brain/virology , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Disease Susceptibility , Genetic Predisposition to Disease , Keratin-18/genetics , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mortality , Promoter Regions, Genetic/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Virus Diseases/immunology , Virus Diseases/pathology
7.
Vector Borne Zoonotic Dis ; 20(7): 484-495, 2020 07.
Article in English | MEDLINE | ID: mdl-32077811

ABSTRACT

Background: Worldwide, horses play critical roles in recreation, food production, transportation, and as working animals. Horses' roles differ by geographical region and the socioeconomic status of the people, but despite modern advances in transportation, which have in some ways altered humans contact with horses, potential risks for equine zoonotic pathogen transmission to humans occur globally. While previous reports have focused upon individual or groups of equine pathogens, to our knowledge, a systematic review of equine zoonoses has never been performed. Methods: Using PRISMA's systematic review guidelines, we searched the English literature and identified 233 previous reports of potential equine zoonoses found in horses. We studied and summarized their findings with a goal of identifying risk factors that favor disease transmission from horses to humans. Results: These previous reports identified 56 zoonotic pathogens that have been found in horses. Of the 233 articles, 13 involved direct transmission to humans (5.6%).The main potential routes of transmission included oral, inhalation, and cutaneous exposures. Pathogens most often manifest in humans through systemic, gastrointestinal, and dermatological signs and symptoms. Furthermore, 16.1% were classified as emerging infectious diseases and thus may be less known to both the equine and human medical community. Sometimes, these infections were severe leading to human and equine death. Conclusions: While case reports of zoonotic infections directly from horses remain low, there is a high potential for underreporting due to lack of knowledge among health professionals. Awareness of these zoonotic pathogens, their disease presentation in horses and humans, and their associated risk factors for cross-species infection are important to public health officials, clinicians, and people with recreational or occupational equid exposure.


Subject(s)
Bacterial Infections/veterinary , Horse Diseases/microbiology , Parasitic Diseases, Animal/parasitology , Virus Diseases/veterinary , Animals , Bacterial Infections/microbiology , Horses , Virus Diseases/virology , Zoonoses
8.
Vet Immunol Immunopathol ; 219: 109971, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31739157

ABSTRACT

Equine herpesvirus type 4 (EHV-4) is mildly pathogenic but is a common cause of respiratory disease in horses worldwide. We previously demonstrated that unlike EHV-1, EHV-4 is not a potent inducer of type-I IFN and does not suppress that IFN response, especially during late infection, when compared to EHV-1 infection in equine endothelial cells (EECs). Here, we investigated the impact of EHV-4 infection in EECs on type-I IFN signaling molecules at 3, 6, and 12 hpi. Findings from our study revealed that EHV-4 did not induce nor suppress TLR3 and TLR4 expression in EECs at all the studied time points. EHV-4 was able to induce variable amounts of IRF7 and IRF9 in EECs with no evidence of suppressive effect on these important transcription factors of IFN-α/ß induction. Intriguingly, EHV-4 did interfere with the phosphorylation of STAT1/STAT2 at 3 hpi and 6 hpi, less so at 12 hpi. An active EHV-4 viral gene expression was required for the suppressive effect of EHV-4 on STAT1/STAT2 phosphorylation during early infection. One or more early viral genes of EHV-4 are involved in the suppression of STAT1/STAT2 phosphorylation observed during early time points in EHV-4-infected EECs. The inability of EHV-4 to significantly down-regulate key molecules of type-I IFN signaling may be related to the lower severity of pathogenesis when compared with EHV-1. Harnessing this knowledge may prove useful in controlling future outbreaks of the disease.


Subject(s)
Endothelial Cells/immunology , Herpesvirus 4, Equid/immunology , Host Microbial Interactions/immunology , Immunity, Innate , Interferon Type I/immunology , Animals , Cells, Cultured , Endothelial Cells/virology , Herpesvirus 4, Equid/pathogenicity , Horse Diseases/immunology , Horse Diseases/virology , Horses , Interferon-Stimulated Gene Factor 3/immunology , Interferon-alpha/immunology , Interferon-beta/immunology , Phosphorylation , Pulmonary Artery/cytology , STAT2 Transcription Factor/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology
9.
Front Microbiol ; 10: 2668, 2019.
Article in English | MEDLINE | ID: mdl-31849857

ABSTRACT

Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.

10.
Viruses ; 11(10)2019 10 11.
Article in English | MEDLINE | ID: mdl-31614538

ABSTRACT

Vaccination remains the most effective approach for preventing and controlling equine influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic and antigenic differences between currently available vaccines and circulating strains, resulting in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health (OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of EIV in vaccines may maximize the protection against presently circulating viral strains. In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.


Subject(s)
Influenza A Virus, H3N8 Subtype/immunology , Influenza Vaccines , Vaccination/veterinary , Vaccines, Synthetic , Animals , Horse Diseases/virology , Horses , Humans , Influenza, Human/prevention & control , Reverse Genetics/methods , Reverse Genetics/veterinary , Vaccines, Attenuated
11.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31511388

ABSTRACT

Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-ß) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction.IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.


Subject(s)
Endothelial Cells/metabolism , Endothelial Cells/virology , Herpesviridae Infections/immunology , Herpesviridae Infections/metabolism , Herpesvirus 1, Equid/immunology , Interferon Type I/metabolism , Animals , Gene Expression Regulation , Hepatitis B, Chronic , Herpesviridae Infections/virology , Herpesvirus 1, Equid/genetics , Horse Diseases/virology , Horses , Host-Pathogen Interactions , Humans , Immunity, Innate , Janus Kinase 1/metabolism , RNA, Messenger/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism
12.
Vet Immunol Immunopathol ; 197: 24-30, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29475503

ABSTRACT

Equine herpesvirus-1 (EHV-1) infection is an important and highly prevalent disease in equine populations worldwide. Previously we have demonstrated that a neuropathogenic strain of EHV-1, T953, suppresses the host cell's antiviral type-I interferon (IFN) response in vitro. Whether or not this is unique to EHV-1 strains possessing the neuropathogenic genotype has been undetermined. Here, we examined whether there is any direct relationship between neuropathogenic genotype and the induced IFN-ß response in equine endothelial cells (EECs) infected with 10 different strains of EHV-1. The extent of virus cell-to-cell spread following infection in EECs was also compared between the neuropathogenic and the non-neuropathogenic genotype of EHV-1. We then compared IFN-ß and the total type-I IFN protein suppression between T953, an EHV-1 strain that is neuropathogenic and T445, an EHV-4 strain mainly associated only with respiratory disease. Data from our study revealed no relationship between the neuropathogenic genotype of EHV-1 and the induced IFN-ß mRNA by the host cell. Results also indicate no statistically significant difference in plaque sizes of both genotypes of EHV-1 produced in EECs. However, while the T953 strain of EHV-1 was able to suppress IFN-ß mRNA and type-I IFN biological activity at 12 h post-infection (hpi), EHV-4 weakly induces both IFN-ß mRNA and type-I IFN biological activity. This finding correlated with a statistically significant difference in the mean plaque sizes produced by the two EHV subtypes in EECs. Our data help illuminate how EHV-1, irrespective of its genotype, evades the host cell's innate immune response thereby enabling viral spread to susceptible cells.


Subject(s)
Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/pathogenicity , Horse Diseases/immunology , Interferon-beta/immunology , Animals , Endothelial Cells/immunology , Endothelial Cells/virology , Genotype , Herpesviridae Infections/immunology , Herpesvirus 1, Equid/classification , Horse Diseases/virology , Horses/immunology , Immune Evasion , Immunity, Innate , Interferon Type I/immunology
13.
Vet Med Sci ; 2(2): 136-142, 2016 May.
Article in English | MEDLINE | ID: mdl-29067187

ABSTRACT

Dermatophilus congolensis, the aetiological agent of dermatophilosis, is a pleomorphic, Gram-positive actinomycete, which infects animals and humans. Often, there is a wrong diagnosis of the infection in animals because of the close resemblance of the organism with other members of the family Actinomycetaceae. In this study, molecular tools were applied to suspected isolates of D. congolensis obtained from naturally infected cattle in Nigeria for confirmation of dermatophilosis. DNA extraction from 54 suspected pure colonies of D. congolensis was carried out using the QIAamp® DNA Mini extraction kit. PCR targeted at the 16S rRNA gene was employed for the confirmation of D. congolensis using 5'-ACATGCAAGTCGAACGATGA-3' and 5'-ACGCTCGCACCCTACGTATT-3' as forward and reverse primers, respectively. Positive amplicons were then sequenced directly using Big Dye Terminator Cycle Sequencing Kit with the forward primers and AmpliTaq-FS DNA Polymerase. Nucleotide sequences were aligned using bioedit (Ibis Biosciences Carlsbad, CA USA) and the phylogenetic analysis was carried out using mega 5.2 (Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Tempe, Arizona, USA) software programme. The aligned nucleotide sequences of 10 positive D. congolensis isolates had between 94% to 99% homology with the sequences of D. congolensis satellite DNA in GenBank. This result also revealed that the sequenced D. congolensis are of different strains. Phylogenetic analysis revealed that D. congolensis, though closely related to Nocardia brasiliensis (NR 074743.01) and Streptomyces sp. (JN 400114.1), belongs to different genus. In conclusion, molecular tools employed in the study were able to confirm the identity of the test organisms as D. congolensis. It can also be concluded that two strains of D. congolensis obtained from the study can still be accommodated within the previously listed strains available in GenBank while the remaining eight may be different strains of D. congolensis not yet listed in GenBank.

14.
Vet World ; 8(9): 1068-72, 2015 Sep.
Article in English | MEDLINE | ID: mdl-27047200

ABSTRACT

AIM: This study aimed at determining the serotypes, antimicrobial profiles, and public health importance of Salmonella strains from camels slaughtered at Maiduguri central abattoir, Nigeria. MATERIALS AND METHODS: Two hundred samples were obtained from camel comprising of intestines, feces, liver, and spleen (n=50 each). Non-lactose fermenting dark center Salmonella colonies were identified using standard biochemical techniques, serotyped and subjected to antimicrobial susceptibility test using minimum inhibition concentration method. RESULTS: Out of the 200 samples collected, 17 were Salmonella positive (spleen=7, intestine=6, feces=3, and liver=1) with a prevalence of 8.5%. Five serotypes comprising Salmonella Eko, 7 (3.5%), Salmonella Uganda, 4 (2.0%), Salmonella Amager, 2 (1.0%), Salmonella Westhampton, 2 (1.0%), and Salmonella Give, 2 (1.0%) were incriminated. Majority of the serotypes were sensitive to the antimicrobials, but one Salmonella Amager exhibited resistance to streptomycin, and one each of Salmonella Uganda and Salmonella Eko were resistant to sulfamethoxazole. CONCLUSION: This study revealed the prevalence and the antibiotic resistance profile of newly emerging Salmonella from camels in the northeast of Nigeria, which can serve as a means for the transmission of Salmonella to human. Therefore, there is a need for the establishment of national Salmonella surveillance and control programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...