Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 835815, 2022.
Article in English | MEDLINE | ID: mdl-35431786

ABSTRACT

Retrograde neurotrophin (NT) transport is a specialized form of signal transduction used to conduct information from axons to the cell bodies of central and peripheral nervous system neurons. It is activated upon NT-Trk receptor binding, NT-Trk internalization into signaling endosomes, and their motion along the axon toward the cell body. Brain-derived neurotrophic factor (BDNF) is an abundant NT that modulates key brain and spinal cord functions, and defects in BDNF trafficking are associated with neuronal death, neurodegenerative diseases and in nerve injury. Decades of study have yielded impressive progress in elucidating NT retrograde transport; however, much information remains unclear. For example, while it is known that NT function is dependent on tight control of NT-receptor intracellular trafficking, data describing the precise spatiotemporal molecular dynamics of their axonal to somatic transport are lacking. In past work, we showed the use of discrete, photo-bleaching-resistant quantum dot (QD)-BNDF probes to activate and track BDNF-TrkB receptor internalization; this revealed a rich diversity of molecular motions that intracellular BDNF signaling endosomes undergo within the soma of nodose ganglia sensory neurons. Here, we used combined techniques of discrete QD-BDNF tracking with compartmented microfluidic chambers to characterize retrograde BDNF-TrkB transport over long-ranging distances of primary dorsal root ganglion sensory neuronal axons. Our new findings show that axonal retrograde motion is comprised of heterogeneous mixtures of diffusive behaviors, pauses, and variations in net molecular-motor-dependent transport speeds. Notably, specific molecular dynamic features such as NT speed were dependent on spatial context that could be categorized in distance from distal axons and proximity to the soma and were not entirely dictated by active motor transport speed. The important implication is recognition that NT-receptor retrograde transport is comprised of molecular dynamics, which change over the course of long-range trafficking to shape overall transport and possibly signaling.

2.
Mol Biol Cell ; 28(23): 3397-3414, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28855374

ABSTRACT

Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.


Subject(s)
Receptors, IgE/metabolism , Syk Kinase/metabolism , Syk Kinase/physiology , Animals , Cell Degranulation , Cell Line, Tumor , Immunoglobulin E/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kinetics , Mast Cells/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Rats , Signal Transduction , Single Molecule Imaging/methods , Tyrosine/metabolism , src Homology Domains
3.
Phys Rev E ; 93: 042401, 2016 04.
Article in English | MEDLINE | ID: mdl-27176323

ABSTRACT

The movement of a particle described by Brownian motion is quantified by a single parameter, D, the diffusion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in biological single-particle tracking experiments since it can provide information on the environment and/or the state of the particle itself via the hydrodynamic radius. Here, we present a method to estimate D that takes into account several effects that occur in practice, important for the correct estimation of D, and that have hitherto not been combined together for an estimation of D. These effects are motion blur from the finite integration time of the camera, intermittent trajectories, and time-dependent localization uncertainty. Our estimation procedure, a maximum-likelihood estimation with an information-based confidence interval, follows directly from the likelihood expression for a discretely observed Brownian trajectory that explicitly includes these effects. We begin with the formulation of the likelihood expression and then present three methods to find the exact solution. Each method has its own advantages in either computational robustness, theoretical insight, or the estimation of hidden variables. The Fisher information for this likelihood distribution is calculated and analyzed to show that localization uncertainties impose a lower bound on the estimation of D. Confidence intervals are established and then used to evaluate our estimator on simulated data with experimentally relevant camera effects to demonstrate the benefit of incorporating variable localization errors.


Subject(s)
Models, Theoretical , Uncertainty , Diffusion , Markov Chains , Motion , Normal Distribution
4.
5.
Article in English | MEDLINE | ID: mdl-23848721

ABSTRACT

We introduce a model for translational molecular motors to demonstrate that a multivalent catalytic walker with flexible, uncoordinated legs can transform the free energy of surface-bound substrate sites into mechanical work and undergo biased, superdiffusive motion, even in opposition to an external load force. The walker in the model lacks any inherent orientation of body or track, and its legs have no chemomechanical coupling other than the passive constraint imposed by their connection to a common body. Yet, under appropriate kinetic conditions, the walker's motion is biased in the direction of unvisited sites, which allows the walker to move nearly ballistically away from the origin as long as a local supply of unmodified substrate sites is available. The multivalent random walker model is mathematically formulated as a continuous-time Markov process and is studied numerically. We use Monte Carlo simulations to generate ensemble estimates of the mean squared displacement and mean work done for this nonergodic system. Our results show that a residence time bias between visited and unvisited sites leads to superdiffusive motion over significant times and distances. This mechanism can be used to adapt any enzyme-substrate system with appropriate kinetics for use as a functional chemical implementation of a molecular motor, without the need for structural anisotropy or conformationally mediated chemomechanical coordination.


Subject(s)
Diffusion , Models, Chemical , Models, Molecular , Models, Statistical , Molecular Motor Proteins/chemistry , Monte Carlo Method , Computer Simulation , Stress, Mechanical
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021117, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405828

ABSTRACT

Recent advances in single-molecule chemistry have led to designs for artificial multipedal walkers that follow tracks of chemicals. We investigate the motion of a class of walkers, called molecular spiders, which consist of a rigid chemically inert body and several flexible enzymatic legs. The legs can reversibly bind to chemical substrates on a surface and through their enzymatic action convert them to products. The legs can also reversibly bind to products, but at a different rate. Antal and Krapivsky have proposed a model for molecular spider motion over regular one-dimensional lattices [T. Antal and P. L. Krapivsky, Phys. Rev. E 76, 021121 (2007).]. In the model the legs hop from site to site under constraints imposed by connection to a common body. The first time a leg visits a site, the site is an uncleaved substrate, and the leg hops from this site only once it has cleaved it into a product. This cleavage happens at a rate r<1, slower than dissociation from a product site, r=1. The effect of cleavage is to slow down the hopping rate for legs that visit a site for the first time. Along with the constraints imposed on the legs, this leads to an effective bias in the direction of unvisited sites that decreases the average time needed to visit n sites. The overall motion, however, remains diffusive in the long time limit. We have reformulated the Antal-Krapivsky model as a continuous-time Markov process and simulated many traces of this process using kinetic Monte Carlo techniques. Our simulations show a previously unpredicted transient behavior wherein spiders with small r values move superdiffusively over significant distances and times. We explain this transient period of superdiffusive behavior by describing the spider process as switching between two metastates: a diffusive state D wherein the spider moves in an unbiased manner over previously visited sites, and a boundary state B wherein the spider is on the boundary between regions of visited and unvisited sites and experiences a bias in the direction of unvisited sites. We show that while the spider remains in the B state it moves ballistically in the direction of unvisited sites, and while the spider is in the D state it moves diffusively. The relative amount of time the spider spends in the two states determines how superdiffusively the spider moves. We show that the B state is Markovian, but the D state is non-Markovian because the duration of a D period depends on how many sites have been visited previously. As time passes the spider spends progressively more time in the D state (moving diffusively) and less time in the B state (moving ballistically). This explains both the transient superdiffusive motion and the eventual decay to diffusive motion as t→∞.

7.
Chem Commun (Camb) ; (22): 3193-5, 2009 Jun 14.
Article in English | MEDLINE | ID: mdl-19587910

ABSTRACT

A high-resolution cross-reactive array capable of classifying alkaloids over a range of concentrations was generated by systematic introduction of a nitroindole analog into a hydrophobic pocket within a DNA three-way junction to match structural motifs presented by the analytes.


Subject(s)
Alkaloids/chemistry , Chemistry Techniques, Analytical/instrumentation , Base Sequence , DNA/analysis , DNA/chemistry , DNA/genetics , Hydrophobic and Hydrophilic Interactions
8.
J Am Chem Soc ; 128(47): 15278-82, 2006 Nov 29.
Article in English | MEDLINE | ID: mdl-17117880

ABSTRACT

We report a rational approach to the construction of cross-reactive arrays for steroids consisting of five to seven sensors incorporating modified oligonucleotides. The sensors for our arrays were selected to maximize their differential responses to the two steroids most different in an arbitrarily chosen parameter named "shape-length". The arrays incorporated three previously unreported types of sensors identified through a massive screening effort: (1) three-way junction sensors with neutralized charges within junction; (2) "self-aggregating sensors"; and (3) sensors incorporating fluorophore directly in a three-way junction as a spacer. The arrays were tested on seven steroids and an alkaloid (cocaine) over a range of concentrations, and achieved 92-96% accuracy in class assignments, despite the close structural similarities between steroids.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Oligonucleotides/chemistry , Steroids/analysis , Cross Reactions , Sensitivity and Specificity , Steroids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...