Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 117125, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002444

ABSTRACT

Active targeting to cancer involves exploiting specific interactions between receptors on the surface of cancer cells and targeting moieties conjugated to the surface of vectors such that site-specific delivery is achieved. Prostate specific membrane antigen (PSMA) has proved to be an excellent target for active targeting to prostate cancer. We report the synthesis and use of a PSMA-specific ligand (Glu-NH-CO-NH-Lys) for the site-specific delivery of brusatol- and docetaxel-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles to prostate cancer. The PSMA targeting ligand covalently linked to PLGA-PEG3400 was blended with methoxyPEG-PLGA to prepare brusatol- and docetaxel-loaded nanoparticles with different surface densities of the targeting ligand. Flow cytometry was used to evaluate the impact of different surface densities of the PSMA targeting ligand in LNCaP prostate cancer cells at 15 min and 2 h. Cytotoxicity evaluations of the targeted nanoparticles reveal differences based on PSMA expression in PC-3 and LNCaP cells. In addition, levels of reactive oxygen species (ROS) were measured using the fluorescent indicator, H2DCFDA, by flow cytometry. PSMA-targeted nanoparticles loaded with docetaxel and brusatol showed increased ROS generation in LNCaP cells compared to PC-3 at different time points. Furthermore, the targeted nanoparticles were evaluated in male athymic BALB/c mice implanted with PSMA-producing LNCaP cell tumors. Evaluation of the percent relative tumor volume show that brusatol-containing nanoparticles show great promise in inhibiting tumor growth. Our data also suggest that the dual drug-loaded targeted nanoparticle platform improves the efficacy of docetaxel in male athymic BALB/c mice implanted with PSMA-producing LNCaP cell tumors.

2.
Pharmaceutics ; 15(11)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38004598

ABSTRACT

Colorectal cancer (CRC) is one of the deadliest malignancies in the US, ranking fourth after lung, prostate, and breast cancers, respectively, in general populations. It continues to be a menace, and the incidence has been projected to more than double by 2035, especially in underdeveloped countries. This review seeks to provide some insights into the disease progression, currently available treatment options and their challenges, and future perspectives. Searches were conducted in the PubMed search engine in the university's online library. The keywords were "Colorectal Cancer" AND "disease process" OR "disease mechanisms" OR "Current Treatment" OR "Prospects". Selection criteria were original articles published primarily during the period of 2013 through 2023. Abstracts, books and documents, and reviews/systematic reviews were filtered out. Of over 490 thousand articles returned, only about 800 met preliminary selection criteria, 200 were reviewed in detail, but 191 met final selection criteria. Fifty-one other articles were used due to cross-referencing. Although recently considered a disease of lifestyle, CRC incidence appears to be rising in countries with low, low-medium, and medium social demographic indices. CRC can affect all parts of the colon and rectum but is more fatal with poor disease outcomes when it is right-sided. The disease progression usually takes between 7-10 years and can be asymptomatic, making early detection and diagnosis difficult. The CRC tumor microenvironment is made up of different types of cells interacting with each other to promote the growth and proliferation of the tumor cells. Significant advancement has been made in the treatment of colorectal cancer. Notable approaches include surgery, chemotherapy, radiation therapy, and cryotherapy. Chemotherapy, including 5-fluorouracil, irinotecan, oxaliplatin, and leucovorin, plays a significant role in the management of CRC that has been diagnosed at advanced stages. Two classes of monoclonal antibody therapies have been approved by the FDA for the treatment of colorectal cancer: the vascular endothelial growth factor (VEGF) inhibitor, e.g., bevacizumab (Avastin®), and the epidermal growth factor receptor (EGFR) inhibitor, e.g., cetuximab (Erbitux®) and panitumumab (Verbitix®). However, many significant problems are still being experienced with these treatments, mainly off-target effects, toxic side effects, and the associated therapeutic failures of small molecular drugs and the rapid loss of efficacy of mAb therapies. Other novel delivery strategies continue to be investigated, including ligand-based targeting of CRC cells.

3.
Biomed Pharmacother ; 165: 115151, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37473683

ABSTRACT

Ovarian cancer is a highly lethal disease that affects women. Early diagnosis and treatment of women with early-stage disease improve the probability of survival. Unfortunately, the majority of women with ovarian cancer are diagnosed at advanced stages 3 and 4 which makes treatment challenging. While the majority of the patients respond to first-line treatment, i.e. cytoreductive surgery integrated with platinum-based chemotherapy, the rate of disease recurrence is very high and the available treatment options for recurrent disease are not curative. Thus, there is a need for more effective treatment options for ovarian cancer. Targeted drug conjugate systems have emerged as a promising therapeutic strategy for the treatment of ovarian cancer. These systems provide the opportunity to selectively deliver highly potent chemotherapeutic drugs to ovarian cancer, sparing healthy normal cells. Thus, the effectiveness of the drugs is improved and systemic toxicity is greatly reduced. In this review, different targeted drug conjugate systems that have been or are being developed for the treatment of ovarian cancer will be discussed.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Treatment Outcome , Chemotherapy, Adjuvant , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Agents/therapeutic use
4.
Pharmaceutics ; 15(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37242560

ABSTRACT

Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.

5.
Bioinform Biol Insights ; 16: 11779322221118330, 2022.
Article in English | MEDLINE | ID: mdl-36046175

ABSTRACT

The inhibition of acetylcholinesterase plays a vital role in the treatment of Alzheimer disease. This study aimed to explore the acetylcholinesterase inhibition potential of Phyllanthus amarus and its phytoconstituents through an in vitro and in silico approach. The in vitro acetylcholinesterase inhibitory activity of P amarus was carried out, followed by the molecular docking studies of its phytoconstituents. The top-ranked molecules identified through molecular docking were subjected to molecular dynamics simulation (MDS) and density functional theory (DFT) studies. The results obtained revealed the methanolic extract of P amarus as a potent acetylcholinesterase inhibitor, while amarosterol A, hinokinin, ß-sitosterol, stigmasterol and ellagic acid were identified as potential acetylcholinesterase inhibitors. The MDS and DFT results are in agreement with those obtained from the docking studies. Our findings suggest further studies on the hit molecules.

6.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885792

ABSTRACT

Glucokinase activators are considered as new therapeutic arsenals that bind to the allosteric activator sites of glucokinase enzymes, thereby maximizing its catalytic rate and increasing its affinity to glucose. This study was designed to identify potent glucokinase activators from prenylated flavonoids isolated from medicinal plants using molecular docking, molecular dynamics simulation, density functional theory, and ADMET analysis. Virtual screening was carried out on glucokinase enzymes using 221 naturally occurring prenylated flavonoids, followed by molecular dynamics simulation (100 ns), density functional theory (B3LYP model), and ADMET (admeSar 2 online server) studies. The result obtained from the virtual screening with the glucokinase revealed arcommunol B (-10.1 kcal/mol), kuwanon S (-9.6 kcal/mol), manuifolin H (-9.5 kcal/mol), and kuwanon F (-9.4 kcal/mol) as the top-ranked molecules. Additionally, the molecular dynamics simulation and MM/GBSA calculations showed that the hit molecules were stable at the active site of the glucokinase enzyme. Furthermore, the DFT and ADMET studies revealed the hit molecules as potential glucokinase activators and drug-like candidates. Our findings suggested further evaluation of the top-ranked prenylated flavonoids for their in vitro and in vivo glucokinase activating potentials.


Subject(s)
Enzyme Activators/pharmacology , Flavonoids/pharmacology , Glucokinase/metabolism , Catalytic Domain/drug effects , Enzyme Activators/chemistry , Flavonoids/chemistry , Glucokinase/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...