Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 124: 103937, 2021 12.
Article in English | MEDLINE | ID: mdl-34687867

ABSTRACT

The adoption of health information technology (HIT) has facilitated efforts to increase the quality and efficiency of health care services and decrease health care overhead while simultaneously generating massive amounts of digital information stored in electronic health records (EHRs). However, due to patient safety issues resulting from the use of HIT systems, there is an emerging need to develop and implement hazard detection tools to identify and mitigate risks to patients. This paper presents a new methodological framework to develop hazard detection models and to demonstrate its capability by using the US Department of Veterans Affairs' (VA) Corporate Data Warehouse, the data repository for the VA's EHR. The overall purpose of the framework is to provide structure for research and communication about research results. One objective is to decrease the communication barriers between interdisciplinary research stakeholders and to provide structure for detecting hazards and risks to patient safety introduced by HIT systems through errors in the collection, transmission, use, and processing of data in the EHR, as well as potential programming or configuration errors in these HIT systems. A nine-stage framework was created, which comprises programs about feature extraction, detector development, and detector optimization, as well as a support environment for evaluating detector models. The framework forms the foundation for developing hazard detection tools and the foundation for adapting methods to particular HIT systems.


Subject(s)
Health Information Systems , Medical Informatics , Delivery of Health Care , Electronic Health Records , Humans , Patient Safety , United States , United States Department of Veterans Affairs
2.
AMIA Jt Summits Transl Sci Proc ; 2020: 469-476, 2020.
Article in English | MEDLINE | ID: mdl-32477668

ABSTRACT

In this work, we aim to enhance the reliability of health information technology (HIT) systems by detection of plausible HIT hazards in clinical order transactions. In the absence of well-defined event logs in corporate data warehouses, our proposed approach identifies relevant timestamped data fields that could indicate transactions in the clinical order life cycle generating raw event sequences. Subsequently, we adopt state transitions of the OASIS Human Task standard to map the raw event sequences and simplify the complex process that clinical radiology orders go through. We describe how the current approach provides the potential to investigate areas of improvement and potential hazards in HIT systems using process mining. The discussion concludes with a use case and opportunities for future applications.

3.
Health Syst (Basingstoke) ; 8(3): 190-202, 2019.
Article in English | MEDLINE | ID: mdl-31839931

ABSTRACT

An increase in the reliability of Health Information Technology (HIT) will facilitate institutional trust and credibility of the systems. In this paper, we present an end-to-end framework for improving the reliability and performance of HIT systems. Specifically, we describe the system model, present some of the methods that drive the model, and discuss an initial implementation of two of the proposed methods using data from the Veterans Affairs HIT and Corporate Data Warehouse systems. The contributions of this paper, thus, include (1) the design of a system model for monitoring and detecting hazards in HIT systems, (2) a data-driven approach for analysing the health care data warehouse, (3) analytical methods for characterising and analysing failures in HIT systems, and (4) a tool architecture for generating and reporting hazards in HIT systems. Our goal is to work towards an automated system that will help identify opportunities for improvements in HIT systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...