Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Biol Insights ; 15: 11779322211012697, 2021.
Article in English | MEDLINE | ID: mdl-33994782

ABSTRACT

Diet plays an essential role in human development and growth, contributing to health and well-being. The socio-economic values, cultural perspectives, and dietary formulation in sub-Saharan Africa can influence gut health and disease prevention. The vast microbial ecosystems in the human gut frequently interrelate to maintain a healthy, well-coordinated cellular and humoral immune signalling to prevent metabolic dysfunction, pathogen dominance, and induction of systemic diseases. The diverse indigenous diets could differentially act as biotherapeutics to modulate microbial abundance and population characteristics. Such modulation could prevent stunted growth, malnutrition, induction of bowel diseases, attenuated immune responses, and mortality, particularly among infants. Understanding the associations between specific indigenous African diets and the predictability of the dynamics of gut bacteria genera promises potential biotherapeutics towards improving the prevention, control, and treatment of microbiome-associated diseases such as cancer, inflammatory bowel disease, obesity, type 2 diabetes, and cardiovascular disease. The dietary influence of many African diets (especially grain-base such as millet, maize, brown rice, sorghum, soya, and tapioca) promotes gut lining integrity, immune tolerance towards the microbiota, and its associated immune and inflammatory responses. A fibre-rich diet is a promising biotherapeutic candidate that could effectively modulate inflammatory mediators' expression associated with immune cell migration, lymphoid tissue maturation, and signalling pathways. It could also modulate the stimulation of cytokines and chemokines involved in ensuring balance for long-term microbiome programming. The interplay between host and gut microbial digestion is complex; microbes using and competing for dietary and endogenous proteins are often attributable to variances in the comparative abundances of Enterobacteriaceae taxa. Many auto-inducers could initiate the process of quorum sensing and mammalian epinephrine host cell signalling system. It could also downregulate inflammatory signals with microbiota tumour taxa that could trigger colorectal cancer initiation, metabolic type 2 diabetes, and inflammatory bowel diseases. The exploitation of essential biotherapeutic molecules derived from fibre-rich indigenous diet promises food substances for the downregulation of inflammatory signalling that could be harmful to gut microbiota ecological balance and improved immune response modulation.

2.
Infect Drug Resist ; 12: 1941-1949, 2019.
Article in English | MEDLINE | ID: mdl-31308714

ABSTRACT

Purpose: Effective routine monitoring and surveillance of parasite genes is a necessary strategy in the control of parasites' resistance to antimalarial drugs, according to the WHO's recommendation. This cross-sectional study therefore aimed at carrying out an epidemiological analysis on malaria incidence in Ado-Odo/Ota, Ogun State. Patients and methods: Blood and corresponding saliva samples were collected from 1,243 subjects of all ages and sex presenting with fever and a parasitemia level ≥2,000 between September 2016 and March 2018. Samples were collected from selected health facilities in the study area of Ogun state to establish the prevalence of falciparum malaria and determine resistance genes harbored by the parasites. The overall prevalence of falciparum malaria in the study site by microscopic examination was 45.86%. The highest incidence of 57.42% was recorded among male subjects. Point mutations of K76T and N86Y in the Pfcrt and pfmdr-1 genes, as well as non-synonymous mutations in Pfk13 genes, were screened for and sequenced for further analysis. Results: Pfcrt was detectable in 57.42% of blood and 51.02% of saliva samples, respectively. About 34.78% of the subjects that were confirmed microscopically harbored the Pfmdr-1 mutated gene while 26.67% of the saliva samples revealed Pfmdr-1. Epidemiological studies identified the presence of wild-type Pfk13 genes in 21.84% of blood and 44.44% of saliva samples correspondingly. For each of the genes evaluated, saliva portrayed great diagnostic performance when compared with blood. Conclusion: Findings from this study have established the prevalence of malaria and the resistance pattern of P. falciparum in the study area. The findings may help in formulating drug policies and suggest the use of saliva as a noninvasive point-of-care method of diagnosing malaria potentially deployable to rural endemic areas.

3.
Afr Health Sci ; 12(3): 355-61, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23382752

ABSTRACT

BACKGROUND: Plasmodium falciparum the main causative agent of malaria is an important public health vector. With the use of PCR, its genetic diversity has been extensively studied with dearth information from Nigeria. METHODS: In this study, 100 P. falciparum strains merozoite surface protein 1(msp-1), merozoite surface protein 2 (msp-2) and Glutamate rich protein (Glurp) from Ogun State General Hospitals were characterized. The genetic diversity of P. falciparum isolates was analyzed by restriction fragment length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) of their respective allelic families KI, MAD 20, RO33 (MSP-1);FC27, 3D7 (MSP-2) and Glutamate rich protein respectively. RESULTS: Majority of the patients showed monoclonal infections while multiplicity of the infection for msp-1 and msp-2 were 1.1 and 1.2 respectively. The estimated number of genotypes was 8 msp-1 (4 KI; 3 MAD; 1 RO33) and 6 msp-2 (3 FC27; 3 3D7). 80% of the isolates coded for Glurp with allelic size ranged between 700 and 900 bp. CONCLUSION: The allelic distributions however were similar to those previously reported in other endemic malaria countries. Future studies will be designed to include other malaria endemic regions of Nigeria such as the oil exploration regions.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation/genetics , Malaria, Falciparum/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Adolescent , Adult , DNA, Protozoan , Female , Genotype , Glutamic Acid/genetics , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Male , Middle Aged , Nigeria/epidemiology , Polymerase Chain Reaction , Prevalence , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...