Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 9(1): e1003217, 2013.
Article in English | MEDLINE | ID: mdl-23359644

ABSTRACT

Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb) to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.


Subject(s)
Blood-Brain Barrier , Drosophila melanogaster , Sexual Behavior, Animal , Signal Transduction/genetics , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Brain/physiology , Central Nervous System/metabolism , Central Nervous System/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Female , Male , Mutation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
J Biol Chem ; 288(2): 1200-13, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23161543

ABSTRACT

Supraphysiological mechanical stretching in smooth muscle results in decreased contractile activity. However, the mechanism is unclear. Previous studies indicated that intestinal motility dysfunction after edema development is associated with increased smooth muscle stress and decreased myosin light chain (MLC) phosphorylation in vivo, providing an ideal model for studying mechanical stress-mediated decrease in smooth muscle contraction. Primary human intestinal smooth muscle cells (hISMCs) were subjected to either control cyclical stretch (CCS) or edema (increasing) cyclical stretch (ECS), mimicking the biophysical forces in non-edematous and edematous intestinal smooth muscle in vivo. ECS induced significant decreases in phosphorylation of MLC and MLC phosphatase targeting subunit (MYPT1) and a significant increase in p21-activated kinase (PAK) activity compared with CCS. PAK regulated MLC phosphorylation in an activity-dependent biphasic manner. PAK activation increased MLC and MYPT1 phosphorylation in CCS but decreased MLC and MYPT1 phosphorylation in hISMCs subjected to ECS. PAK inhibition had the opposite results. siRNA studies showed that PAK1 plays a critical role in regulating MLC phosphorylation in hISMCs. PAK1 enhanced MLC phosphorylation via phosphorylating MYPT1 on Thr-696, whereas PAK1 inhibited MLC phosphorylation via decreasing MYPT1 on both Thr-696 and Thr-853. Importantly, in vivo data indicated that PAK activity increased in edematous tissue, and inhibition of PAK in edematous intestine improved intestinal motility. We conclude that PAK1 positively regulates MLC phosphorylation in intestinal smooth muscle through increasing inhibitory phosphorylation of MYPT1 under physiologic conditions, whereas PAK1 negatively regulates MLC phosphorylation via inhibiting MYPT1 phosphorylation when PAK activity is increased under pathologic conditions.


Subject(s)
Gastrointestinal Motility , Intestines/physiology , Muscle, Smooth/physiology , Myosin Light Chains/metabolism , p21-Activated Kinases/metabolism , Animals , Cells, Cultured , Humans , Male , Muscle Contraction , Phosphorylation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...