Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38892549

ABSTRACT

Yerba Mate (YM) (Ilex paraguariensis) is a natural herbal supplement with a well-described anti-inflammatory capacity and beneficial effects in different inflammatory contexts such as insulin resistance or obesity. However, whether YM could improve other inflammatory conditions such as colitis or the immune cell population that can be modulated by this plant remains elusive. Here, by using 61 male and female C57BL/6/J wild-type (WT) mice and the dextran sodium sulfate (DSS)-induced acute colitis model, we evaluated the effect of YM on colitis symptoms and macrophage polarization. Our results showed that the oral administration of YM reduces colitis symptoms and improves animal survival. Increasing infiltration of anti-inflammatory M2 macrophage was observed in the colon of the mice treated with YM. Accordingly, YM promoted M2 macrophage differentiation in vivo. However, the direct administration of YM to bone marrow-derived macrophages did not increase anti-inflammatory polarization, suggesting that YM, through an indirect mechanism, is able to skew the M1/M2 ratio. Moreover, YM consumption reduced the Eubacterium rectale/Clostridium coccoides and Enterobacteriaceae groups and increased the Lactobacillus/Lactococcus group in the gut microbiota. In summary, we show that YM promotes an immunosuppressive environment by enhancing anti-inflammatory M2 macrophage differentiation, reducing colitis symptoms, and suggesting that YM consumption may be a good cost-effective treatment for ulcerative colitis.


Subject(s)
Anti-Inflammatory Agents , Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Ilex paraguariensis , Macrophages , Mice, Inbred C57BL , Plant Extracts , Animals , Macrophages/drug effects , Ilex paraguariensis/chemistry , Colitis/drug therapy , Colitis/chemically induced , Male , Female , Anti-Inflammatory Agents/pharmacology , Mice , Plant Extracts/pharmacology , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Colon/drug effects , Colon/pathology , Cell Differentiation/drug effects
2.
Front Immunol ; 13: 841641, 2022.
Article in English | MEDLINE | ID: mdl-35663931

ABSTRACT

Lymphatic vasculature is a network of capillaries and vessels capable of draining extracellular fluid back to blood circulation and to facilitate immune cell migration. Although the role of the lymphatic vasculature as coordinator of fluid homeostasis has been extensively studied, the consequences of abnormal lymphatic vasculature function and impaired lymph drainage have been mostly unexplored. Here, by using the Prox1+/- mice with defective lymphatic vasculature and lymphatic leakage, we provide evidence showing that lymph leakage induces an immunosuppressive environment by promoting anti-inflammatory M2 macrophage polarization in different inflammatory conditions. In fact, by using a mouse model of tail lymphedema where lymphatic vessels are thermal ablated leading to lymph accumulation, an increasing number of anti-inflammatory M2 macrophages are found in the lymphedematous tissue. Moreover, RNA-seq analysis from different human tumors shows that reduced lymphatic signature, a hallmark of lymphatic dysfunction, is associated with increased M2 and reduced M1 macrophage signatures, impacting the survival of the patients. In summary, we show that lymphatic vascular leakage promotes an immunosuppressive environment by enhancing anti-inflammatory macrophage differentiation, with relevance in clinical conditions such as inflammatory bowel diseases or cancer.


Subject(s)
Lymphatic Vessels , Lymphedema , Anti-Inflammatory Agents , Humans , Immunosuppression Therapy , Macrophages
3.
FASEB J ; 36(5): e22276, 2022 05.
Article in English | MEDLINE | ID: mdl-35344212

ABSTRACT

The lymphatic vasculature is a unidirectional network of lymphatic endothelial cells, whose main role is to maintain fluid homeostasis along with the absorption of dietary fat in the gastrointestinal organs and management and coordination of immune cell trafficking into lymph nodes during homeostasis and under inflammatory conditions. In homeostatic conditions, immune cells, such as dendritic cells, macrophages, or T cells can enter into the lymphatic vasculature and move easily through the lymph reaching secondary lymph nodes where immune cell activation or peripheral tolerance can be modulated. However, under inflammatory conditions such as pathogen infection, increased permeabilization of lymphatic vessels allows faster immune cell migration into inflamed tissues following a chemokine gradient, facilitating pathogen clearance and the resolution of inflammation. Interestingly, since the re-discovery of lymphatic vasculature in the central nervous system, known as the meningeal lymphatic vasculature, the role of these lymphatics as a key player in several neurological disorders has been described, with emphasis on the neurodegenerative process. Alternatively, less has been discussed about meningeal lymphatics and its role in neuroinflammation. In this review, we discuss current knowledge about the anatomy and function of the meningeal lymphatic vasculature and specifically analyze its contribution to different neuroinflammatory processes, highlighting the potential therapeutic target of meningeal lymphatic vasculature in these pathological conditions.


Subject(s)
Lymphatic Vessels , Neuroinflammatory Diseases , Endothelial Cells , Humans , Lymphatic System , Meninges/pathology
4.
Anticancer Agents Med Chem ; 22(7): 1414-1425, 2022.
Article in English | MEDLINE | ID: mdl-34053425

ABSTRACT

BACKGROUND: Adenosine is a natural nucleoside present in a variety of organs and tissues, where it acts as a modulator of diverse physiological and pathophysiological processes. These actions are mediated by at least four G protein-coupled receptors, which are widely and differentially expressed in tissues. Interestingly, high concentrations of adenosine have been reported in a variety of tumors. In this context, the final output of adenosine in tumorigenesis will likely depend on the constellation of adenosine receptors expressed by tumor and stromal cells. Notably, activation of the A3 receptor can reduce the proliferative capacity of various cancer cells. OBJECTIVE: This study aimed to describe the anti-proliferative effects of two previously synthesized adenosine derivatives with A3 agonist action (compounds 2b and 2f) through in vitro assays. METHODS: We used gastric and breast cancer cell lines expressing the A3 receptor as in vitro models and theoretical experiments for molecular dynamics and determination of ADME properties. RESULTS: The antiproliferative effects of adenosine derivatives (after determining IC50 values) were comparable or even higher than those described for IB-MECA, a commercially available A3 agonist. Among possible mechanisms involved, apoptosis was found to be induced in MCF-7 cells but not in AGS or MDA-MB-231 cells. Surprisingly, we were unable to observe cellular senescence induction upon treatment with compounds 2b and 2f in any of the cell lines studied, although we cannot rule out other forms of cell cycles exit at this point. CONCLUSION: Both adenosine derivatives showed antiproliferative effects on gastric and breast cancer cell lines, and were able to induce apoptosis, at least in the MCF-7 cell line. Further studies will be necessary to unveil receptor specificity and mechanisms accounting for the antiproliferative properties of these novel semi-synthetic compounds.


Subject(s)
Breast Neoplasms , Receptor, Adenosine A3 , Adenosine/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Cell Cycle , Female , Humans , Receptor, Adenosine A3/metabolism
5.
Int. j. morphol ; 39(3): 789-796, jun. 2021. ilus, tab, graf
Article in English | LILACS | ID: biblio-1385422

ABSTRACT

SUMMARY: Age-associated decline of immune system, termed immunosenescence, is characterized by low-grade systemic inflammation, known as inflammaging, together with T-cell functional dysregulation. Although affecting all individuals, different environmental as well genetic factors impinge on the individual´s susceptibility or resilience to immunosenescence. Physical activity has been shown to improve autonomy and functionality in older adults. However, if physical activity affects immunosenescence or inflammaging remains unknown. The purpose of this study was to analyze immunosenescence and inflammaging in elderly individuals by measuring peripheral naïve T cells and interleukin (IL) -6 from peripheral blood and evaluate the impact of physical activity on T cell dysregulation and inflammaging. Thirty (30) elderly volunteers (10 males and 20 females), and 7 young controls (2 males ad 7 females), were recruited for this study. A methodology questionnaire was used to evaluate different parameters such as physical activity, and peripheral naïve CD4+ and CD8+ T cells and serum IL-6 were measured by FACS and ELISA respectively. Our results shown that naïve T cells decline, and IL-6 levels increase as older people age. Interestingly, we observed strong negative correlation between naïve T cells numbers and IL-6 levels in older adults, suggesting a direct link between reduced naïve T cell pool and increased inflammaging. Continuous physical activity during youth did not affect immunosenescence and inflammaging in elderly, but physical activity during elderly increase naïve T cell numbers and reduce inflammaging in older subjects. Our results showed reduced number of naïve T cells and increased levels of IL-6 as elder people get older. Moreover, the strong negative correlation between these parameters suggest that naïve T cells can have a direct suppressive activity over innate immune components. Furthermore, physical activity during elderly can reduce immunosenescence and inflammaging in older subjects.


RESUMEN: El deterioro del sistema inmunológico asociado con la edad, denominado inmunosenescencia, se caracteriza por una inflamación sistémica de bajo grado, conocida como inflamaging, junto con una desregulación funcional de las células T. Aunque afectan a todos los individuos, diferentes factores ambientales y genéticos inciden en la susceptibilidad o resiliencia del individuo a la inmunosenescencia. Estudios anteriores han demostrado que la actividad física mejora la autonomía y la funcionalidad en los adultos mayores, aunque como la actividad física impacta a la inmunosenescencia e inflammaging es aún desconocido. El propósito de este estudio fue analizar la inmunosenescencia e inflammaging en personas de edad avanzada, midiendo las células T vírgenes y la interleucina (IL)-6 de sangre periférica, junto con evaluar el impacto de la actividad física sobre la inflamación basal y la inmunosenescencia. Treinta voluntarios ancianos (10 hombres y 20 mujeres) y 7 controles jóvenes (2 hombres y 5 mujeres) fueron incluidos en este estudio. Para medir actividad física, autonomía y dependencia se utilizó un cuestionario de metodología, junto con evaluar el número de células T CD4+ y CD8+ periféricas vírgenes e IL-6 sérica mediante FACS y ELISA, respectivamente. Nuestros resultados muestran que las células T vírgenes disminuyen y los niveles de IL-6 aumentan a medida que las personas mayores envejecen. Curiosamente, observamos una fuerte correlación negativa entre el número de células T vírgenes y los niveles de IL-6 en adultos mayores, lo que sugiere un vínculo directo entre la reducción de la reserva de células T vírgenes y el aumento de la inflamación. La actividad física durante la juventud no afectó la inmunosenescencia ni la inflamación en los ancianos, pero la actividad física durante la vejez aumenta el número de células T vírgenes y reduce la inflamación en los adultos mayores. Estos resultados sugieren que inmunosenescencia e inflammaging parecen estar directamente conectados, además de concluir que el desarrollo de actividad física durante la vejez reduce la inmunosenescencia y la inflamación basal en adultos mayores.


Subject(s)
Humans , Male , Female , Aged , Aged, 80 and over , T-Lymphocytes/immunology , Exercise/physiology , Inflammation , Aging/immunology , Interleukin-6 , Immunosenescence/immunology
6.
Platelets ; 32(8): 1113-1119, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-33775219

ABSTRACT

Cardiovascular diseases (CVDs) remain leading causes of death worldwide. While platelet-mediated thrombus formation following the rupture of an atherosclerotic plaque is one of the key pathophysiologic events in CVDs, the role of platelets in previous or more advanced stages of atherosclerosis is less known. Interestingly, the presence of platelets has been observed at the core of the atherosclerotic plaque.In order to study the conditions necessary for platelets to migrate toward an atherosclerotic lesion, we designed an in vitro co-culture model. Platelets were co-cultured with monocytes in Transwell inserts covered with a confluent endothelium and the number of migrating platelets and/or monocytes was determined under different conditions. Platelets were also exposed to media conditioned obtained from co-cultures prior to migration assays.Here we show that coculturing platelets and monocytes increased platelet transmigration, with a considerable number of transmigrated platelets found not associated to monocytes. Interestingly, conditioned media from platelet-monocyte co-cultures also increased platelet transmigration and aggregation, suggesting the existence of soluble factors secreted by monocytes that enhance the migratory and pro-aggregating capabilities of platelets.We conclude that platelets have the machinery to migrate through an activated endothelium, a response that requires the interaction with secreted factors produce in the context of the interaction with monocytes under atherogenic conditions.


Subject(s)
Blood Platelets/metabolism , Endothelial Cells/metabolism , Monocytes/metabolism , Humans
7.
Obes Rev ; 22(6): e13200, 2021 06.
Article in English | MEDLINE | ID: mdl-33426811

ABSTRACT

Obesity is an increasing problem in developed and developing countries. Individuals with obesity have a higher risk of several diseases, such as cardiovascular disease, increased risk of insulin resistance, type 2 diabetes, infertility, degenerative disorders, and also certain types of cancer. Adipose tissue (AT) is considered an extremely active endocrine organ, and the expansion of AT is accompanied by the infiltration of different types of immune cells, which induces a state of low-grade, chronic inflammation and metabolic dysregulation. Even though the exact mechanism of this low-grade inflammation is not fully understood, there is clear evidence that AT-infiltrating macrophages (ATMs) play a significant role in the pro-inflammatory state and dysregulated metabolism. ATMs represent the most abundant class of leukocytes in AT, constituting 5% of the cells in AT in individuals with normal weight. However, this percentage dramatically increases up to 50% in individuals with obesity, suggesting an important role of ATMs in obesity and its associated complications. In this review, we discuss current knowledge of the function of ATMs during steady-state and obesity and analyze its contribution to different obesity-associated diseases, highlighting the potential therapeutic target of ATMs in these pathological conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adipose Tissue , Humans , Inflammation , Macrophages , Obesity/complications
8.
Int J Mol Sci ; 21(9)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384773

ABSTRACT

Aging is one of the main risk factors for the development of chronic diseases, with both the vascular endothelium and platelets becoming functionally altered. Cellular senescence is a form of permanent cell cycle arrest initially described in primary cells propagated in vitro, although it can also be induced by anticancer drugs and other stressful stimuli. Attesting for the complexity of the senescent phenotype, senescent cells synthesize and secrete a wide variety of bioactive molecules. This "senescence-associated secretory phenotype" (SASP) endows senescent cells with the ability to modify the tissue microenvironment in ways that may be relevant to the development of various physiological and pathological processes. So far, however, the direct role of factors secreted by senescent endothelial cells on platelet function remains unknown. In the present work, we explore the effects of SASP factors derived from senescent endothelial cells on platelet function. To this end, we took advantage of a model in which immortalized endothelial cells (HMEC-1) were induced to senesce following exposure to doxorubicin, a chemotherapeutic drug widely used in the clinic. Our results indicate that (1) low concentrations of doxorubicin induce senescence in HMEC-1 cells; (2) senescent HMEC-1 cells upregulate the expression of selected components of the SASP and (3) the media conditioned by senescent endothelial cells are capable of inducing platelet activation and aggregation. These results suggest that factors secreted by senescent endothelial cells in vivo could have a relevant role in the platelet activation observed in the elderly or in patients undergoing therapeutic stress.


Subject(s)
Cellular Senescence , Endothelial Cells/metabolism , Platelet Activation , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Communication , Cell Line , Cells, Cultured , Culture Media, Conditioned/pharmacology , Endothelial Cells/physiology , Humans
9.
Lymphat Res Biol ; 18(2): 136-145, 2020 04.
Article in English | MEDLINE | ID: mdl-31429621

ABSTRACT

Background: Early lymphedema detection may reduce the symptoms and improve clinical outcomes. However, the lack of reliable serum biomarkers capable of predicting lymphedema development is a current medical problem. In this study, we investigated if serum levels of hyaluronic acid (HA) and leukotriene B4 (LTB4), two molecules involved in lymphedema development, may work as predictors of this condition. Methods and Results: A mouse model of acquired lymphedema was generated through ablation of tail dermal lymphatic network. Tail diameter was measured daily, and HA and LTB4 serum levels were analyzed before and during the development of lymphedema. We found increased serum levels of HA and reduced levels of LTB4 at early days before the appearance of lymphedema signs. Similar results were observed in the lymphedema tissue. Increased local and systemic inflammation was also detected at early time points. Moreover, the ratio LTB4/HA arises as the strongest predictor for lymphedema development. In fact, we found an inverse correlation in our model, where reduced LTB4/HA levels showed increased lymphedema signs. Conclusions: These findings suggest that serum ratio of LTB4/HA may be a useful biomarker to predict acquired lymphedema development, with potential to be used in clinical conditions such as breast cancer patients.


Subject(s)
Hyaluronic Acid/blood , Leukotriene B4/blood , Lymphedema , Animals , Biomarkers/blood , Disease Models, Animal , Humans , Lymphedema/diagnosis , Mice
10.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31653055

ABSTRACT

Alterations in platelet aggregation are common in aging individuals and in the context of age-related pathologies such as cancer. So far, however, the effects of senescent cells on platelets have not been explored. In addition to serving as a barrier to tumor progression, cellular senescence can contribute to remodeling tissue microenvironments through the capacity of senescent cells to synthesize and secrete a plethora of bioactive factors, a feature referred to as the senescence-associated secretory phenotype (SASP). As senescent cells accumulate in aging tissues, sites of tissue injury, or in response to drugs, SASP factors may contribute to increase platelet activity and, through this mechanism, generate a microenvironment that facilitates cancer progression. Using in vitro models of drug-induced senescence, in which cellular senescence was induced following exposure of mammary epithelial cells (MCF-10A and MCF-7) and gastric cancer cells (AGS) to the CDK4/6 inhibitor Palbociclib, we show that senescent mammary and gastric cells display unique expression profiles of selected SASP factors, most of them being downregulated at the RNA level in senescent AGS cells. In addition, we observed cell-type specific differences in the levels of secreted factors, including IL-1ß, in media conditioned by senescent cells. Interestingly, only media conditioned by senescent MCF-10A and MCF-7 cells were able to enhance platelet aggregation, although all three types of senescent cells were able to attract platelets in vitro. Nevertheless, the effects of factors secreted by senescent cells and platelets on the migration and invasion of non-senescent cells are complex. Overall, platelets have prominent effects on migration, while factors secreted by senescent cells tend to promote invasion. These differential responses likely reflect differences in the specific arrays of secreted senescence-associated factors, specific factors released by platelets upon activation, and the susceptibility of target cells to respond to these agents.


Subject(s)
Blood Platelets/metabolism , Cellular Senescence , Blood Platelets/cytology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cellular Senescence/drug effects , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Cytokines/analysis , Humans , Piperazines/pharmacology , Plasminogen Activator Inhibitor 2/metabolism , Platelet Aggregation/drug effects , Pyridines/pharmacology , Transcriptome/drug effects
11.
Prev Nutr Food Sci ; 23(2): 102-107, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30018887

ABSTRACT

The Phaseolus vulgaris (common bean), a worldwide vegetable of high consumption, can act as a nutritional supplement in the diet of oversized individuals to reduce weight. Studies have demonstrated the existence of molecules capable of inhibiting the breakdown of carbohydrates via inhibition of both α-amylases and glycosidases. Here, we describe a novel property of the Phaseolus vulgaris: inhibition of thrombotic cardiovascular events. Using assays to test platelet aggregation and secretion, and flow cytometry against the surface expression of P-Selectin. We show that bean extracts significantly reduced adenosine 5'-diphosphate and arachidonic acid induced-platelet aggregation. The mechanism underlying such effect appears to be mediated by AKT, since AKT hypo-phosphorylation decreases the "inside out" activation of platelets. In sum, our results support the hypothesis that common beans are nutritional ingredients that help reduce the risk of cardiovascular diseases associated with platelet hyper-reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...