Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Influenza Other Respir Viruses ; 18(2): e13254, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314064

ABSTRACT

Background: The introduction of multiple avian influenza virus (AIV) subtypes into Nigeria has resulted in several poultry outbreaks purportedly linked to trade and wild birds. The role of wild birds in perpetuating AIV in Nigeria was, therefore, elucidated. Methods: A cross-sectional study was conducted among wild aquatic bird species at the Hadejia-Nguru wetlands in Northeastern Nigeria between March and April 2022. A total of 452 swabs (226 cloacae and 226 oropharyngeal) were collected using a mist net to capture the birds. These samples were tested by RT-qPCR, followed by sequencing. Results: Highly pathogenic AIV of the H5N1 subtype was identified in clinically healthy wild bird species, namely, African jacana, ruff, spur-winged goose, squared-tailed nightjar, white-faced whistling ducks, and white stork. A prevalence of 11.1% (25/226) was recorded. Phylogenetic analysis of the complete HA gene segment indicated the presence of clade 2.3.4.4b. However, these H5N1 viruses characterized from these wild birds cluster separately from the H5N1 viruses characterized in Nigerian poultry since early 2021. Specifically, the viruses form two distinct genetic groups both linked with the Eurasian H5N1 gene pool but likely resulting from two distinct introductions of the virus in the region. Whole-genome characterization of the viruses reveals the presence of mammalian adaptive marker E627K in two Afro-tropical resident aquatic ducks. This has zoonotic potential. Conclusion: Our findings highlight the key role of surveillance in wild birds to monitor the diversity of viruses in this area, provide the foundations of epidemiological understanding, and facilitate risk assessment.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Humans , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Phylogeny , Nigeria/epidemiology , Cross-Sectional Studies , Wetlands , Birds , Influenza A virus/genetics , Animals, Wild , Poultry , Ducks , Mammals
2.
Transbound Emerg Dis ; 69(2): 423-433, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33480188

ABSTRACT

Among recurrent sanitary emergencies able to spread rapidly worldwide, avian influenza is one of the main constraints for animal health and food security. In West Africa, Nigeria has been experiencing repeated outbreaks of different strains of avian influenza virus (AIV) since 2006 and is also recognized as a hot spot in the region for the introduction of emerging strains by migratory wild birds. Here, we generated complete genomes of 20 highly pathogenic avian influenza (HPAI) H5N8 viruses collected during active surveillance in Nigerian live bird markets (LBM) and from outbreaks reported in the country between 2016 and 2019. Phylogenetic analysis reveals that the Nigerian viruses cluster into four separate genetic groups within HPAI H5 clade 2.3.4.4b. The first group includes 2016-2017 Nigerian viruses with high genetic similarity to H5N8 viruses detected in Central African countries, while the second includes Nigerian viruses collected both in LBM and poultry farms (2018-2019), as well as in Cameroon, Egypt and Siberia. A natural reassortant strain identified in 2019 represents the third group: H5N8 viruses with the same gene constellation were identified in 2018 in South Africa. Finally, the fourth introduction represents the first detection in the African continent of the H5N6 subtype, which is related to European viruses. Bayesian phylogeographic analyses confirmed that the four introductions originated from different sources and provide evidence of the virus spread within Nigeria, as well as diffusion beyond its borders. The multiple epidemiological links between Nigeria, Central and Southern African countries highlight the need for harmonized and coordinated surveillance system to control AIV impact. Improved surveillance at the Wetlands, LBMs and early warning of outbreaks are crucial for prevention and control of AIV, which can be potentially zoonotic and be a threat to human health.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Bayes Theorem , Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/epidemiology , Nigeria/epidemiology , Phylogeny
3.
Open Vet J ; 9(1): 74-80, 2019 04.
Article in English | MEDLINE | ID: mdl-31086770

ABSTRACT

A flock of 54 wk-old layer birds exhibiting signs of respiratory distress, greenish diarrhea, and drop in egg production was investigated. A marked drop in egg production (55%) was recorded with eggs appearing white and soft-shelled. Mortality was in the range of 1%-2% with post-mortem lesions revealing cloudy air sacs, frothy, and congested lungs. Viral RNA was extracted from pooled tissue samples (trachea, lungs, spleen, and liver) and tested for Avian influenza virus (AIV), Newcastle disease virus (NDV), and infectious bronchitis virus (IBV) by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, virus isolation was attempted in 9-11 day-old embryonating chicken eggs (ECE). In order to determine the prevalence of IBV serotype(s) in the flock, serum samples were screened by hemagglutination-inhibition (HI) test using IBV antigens and antisera (Arkansas, Connecticut, and Massachusetts). Neither AIV nor NDV but IBV was detected in the tissue samples by RT-PCR. In addition, virus isolate obtained after four serial passages in ECE produced dwarfed, stunted, and hemorrhagic embryos, and the isolate was confirmed by RT-PCR to be IBV. The serum samples were 100% seropositive for three serotypes with HI titres ranging from 5 to 12 Log2. In this study, IBV was confirmed as the causative agent of the observed respiratory distress and drop in egg production. Also, the evidence of co-circulation of multiple IBV serotypes was established, this to the best of our knowledge is the first of such report in Nigeria. We recommend extensive molecular and sero-epidemiology of circulating IBV genotypes and serotypes in Nigeria with the aim of developing better control strategies, including vaccination.


Subject(s)
Bronchitis/veterinary , Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus/physiology , Poultry Diseases/epidemiology , Animals , Bronchitis/epidemiology , Bronchitis/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Hemagglutination Inhibition Tests/veterinary , Infectious bronchitis virus/classification , Infectious bronchitis virus/genetics , Nigeria/epidemiology , Poultry Diseases/virology , Prevalence , Serogroup
4.
Trop Anim Health Prod ; 45(1): 53-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22618191

ABSTRACT

Four Newcastle disease virus isolates were recovered from asymptomatic guinea fowl (Numida meleagris galeata) and Muscovy ducks (Cariana moscata). For the purpose of molecular identification and phylogeny, phylogenetic characterization was performed to identify the pathotypes. All four viruses had a cleavage motif (112)RRQKRF(117) which is characteristic of virulent strains. The isolates grouped with viruses previously reported as sub-lineage 5 g from chickens in Nigeria. This study report for the first time the identification of the virulent sub-lineage 5 g Newcastle disease virus from apparently healthy guinea fowl and domestic ducks in Nigeria, and since infections were sub-clinical, it suggest that these species could play a role in the spread and transmission of virulent Newcastle disease virus that can infect other poultry. The isolation and identification of virulent Newcastle disease virus in these unusual hosts and the high sequence similarity (99.3-100 %) between viruses in this study with strains reported for Niger and Cameroun gives insights into the ecology of virulent Newcastle disease viruses and suggests some cross-border movement and trade in live poultry.


Subject(s)
Ducks/virology , Galliformes/virology , Newcastle disease virus/genetics , Phylogeny , Amino Acid Motifs/genetics , Animals , Base Sequence , Cluster Analysis , Electrophoresis, Agar Gel/veterinary , Models, Genetic , Molecular Sequence Data , Newcastle disease virus/pathogenicity , Nigeria , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...