Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
J Physiol Biochem ; 80(2): 451-463, 2024 May.
Article in English | MEDLINE | ID: mdl-38564162

ABSTRACT

The physical and functional interaction between transient receptor potential channel ankyrin 1 (TRPA1) and neuronal calcium sensor 1 (NCS-1) was assessed. NCS-1 is a calcium (Ca2+) sensor found in many tissues, primarily neurons, and TRPA1 is a Ca2+ channel involved not only in thermal and pain sensation but also in conditions such as cancer and chemotherapy-induced peripheral neuropathy, in which NCS-1 is also a regulatory component.We explored the interactions between these two proteins by employing western blot, qRT-PCR, co-immunoprecipitation, Ca2+ transient monitoring with Fura-2 spectrophotometry, and electrophysiology assays in breast cancer cells (MDA-MB-231) with different levels of NCS-1 expression and neuroblastoma cells (SH-SY5Y).Our findings showed that the expression of TRPA1 was directly correlated with NCS-1 levels at both the protein and mRNA levels. Additionally, we found a physical and functional association between these two proteins. Physically, the NCS-1 and TRPA1 co-immunoprecipitate. Functionally, NCS-1 enhanced TRPA1-dependent Ca2+ influx, current density, open probability, and conductance, where the functional effects depended on PI3K. Conclusion: NCS-1 appears to act not only as a Ca2+ sensor but also modulates TRPA1 protein expression and channel function in a direct fashion through the PI3K pathway. These results contribute to understanding how Ca2+ homeostasis is regulated and provides a mechanism underlying conditions where Ca2+ dynamics are compromised, including breast cancer. With a cellular pathway identified, targeted treatments can be developed for breast cancer and neuropathy, among other related diseases.


Subject(s)
Breast Neoplasms , Neuronal Calcium-Sensor Proteins , Neuropeptides , TRPA1 Cation Channel , Female , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Calcium/metabolism , Calcium Signaling , Cell Line, Tumor , Neuronal Calcium-Sensor Proteins/metabolism , Neuronal Calcium-Sensor Proteins/genetics , Neurons/metabolism , Neurons/drug effects , Neuropeptides/metabolism , Neuropeptides/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics
2.
Cureus ; 14(12): e32257, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36620844

ABSTRACT

Background Some breast cancer cases are related to inherited mutations, and this is the reason why early mutation screening is emerging as an area of focus for cost-effective care. However, breast cancer-related mutations vary according to race, ethnicity, geographic origin, and healthcare access. Surveillance for familial breast cancer is not performed routinely in Colombia. Our main aim in this study was to describe a cohort of breast cancer patients, carrying founder breast cancer gene (BRCA) mutations, which were followed up for up to 10 years (2010-2019) in Neiva, Colombia. Methods We performed a retrospective description from an outpatient care center in Huila, Colombia, a region with high breast cancer rates. This study included patients with both a breast cancer diagnosis and an incident genetic mutation for breast cancer (detected during a breast cancer consultation). We captured information from patient medical records. Descriptive analyses were performed. Results A total of 105 patients met the study's inclusion criteria and were included patients with the BRCA1 mutation and three with BRCA2 mutations. They had a median age of 45 years (IQR, 36 to 51 years). Relatives with a breast cancer history were found in 74 carriers (70.5%). Most patients had a report of Breast Imaging-Reporting and Data System (BIRADS) ≥ 4. A TNM (tumor, node, metastasis) changed reclassification was observed in anatomical vs. prognostic classification. Median follow-up was of 74 months (IQR, 44 to 130), overall observed mortality was 22.9%, and specific mortality was 19.1%. Conclusion Women with breast cancer who carry a mutation related to breast cancer are usually younger than age 50 at diagnosis. Developing strategies and specific policies for this population is needed, and a prevalent BRCA1 c.3331_3334delCAAG mutation could be used as a cost-effective first approach. Among these patients, a risk-increased reclassification was observed.

3.
J Alzheimers Dis ; 74(3): 937-950, 2020.
Article in English | MEDLINE | ID: mdl-32116258

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive cognitive decline and pathologically by the accumulation of amyloid-ß (Aß) and tau hyperphosphorylation causing neurodegeneration and neuroinflammation. Current AD treatments do not stop or reverse the disease progression, highlighting the need for more effective therapeutics. The phytocannabinoid cannabidiol (CBD) has demonstrated antioxidant, anti-inflammatory, and neuroprotective properties. Furthermore, chronic CBD treatment (20 mg/kg) reverses social and object recognition memory deficits in the AßPPxPS1 transgenic mouse model with only limited effects on AD-relevant brain pathology. Importantly, studies have indicated that CBD works in a dose-dependent manner. Thus, this study determined the chronic effects of 50 mg/kg CBD in male AßPPxPS1 mice. 12-month-old mice were treated with 50 mg/kg CBD or vehicle via daily intraperitoneal injections for 3 weeks prior to behavioral testing. A variety of cognitive domains including object and social recognition, spatial and fear-associated memory were evaluated. Pathological brain analyses for AD-relevant markers were conducted using ELISA and western blot. Vehicle-treated male AßPPxPS1 mice demonstrated impaired social recognition memory and reversal spatial learning. These deficits were restored after CBD treatment. Chronic CBD tended to reduce insoluble Aß40 levels in the hippocampus of AßPPxPS1 mice but had no effect on neuroinflammation, neurodegeneration, or PPARγ markers in the cortex. This study demonstrates that therapeutic-like effects of 50 mg/kg CBD on social recognition memory and spatial learning deficits in AßPPxPS1 mice are accompanied by moderate brain region-specific reductions in insoluble Aß40 levels. The findings emphasize the clinical relevance of CBD treatment in AD; however, the underlying mechanisms involved require further investigation.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Cannabidiol/therapeutic use , Cognition/drug effects , Peptide Fragments/metabolism , Presenilin-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Amyloid beta-Protein Precursor/antagonists & inhibitors , Animals , Brain/pathology , Dose-Response Relationship, Drug , Fear/drug effects , Fear/psychology , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/antagonists & inhibitors , Recognition, Psychology , Social Behavior , Space Perception/drug effects
4.
Behav Brain Res ; 353: 227-235, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29559337

ABSTRACT

Elevated levels of the type III (III) isoforms of neuregulin 1 (NRG1) have been observed in the brains of schizophrenia patients that carry NRG1 HapICE risk alleles, which is thought to contribute to the aetiology of the disease. We generated transgenic mice with forebrain driven Nrg1 III overexpression (Nrg1 III tg) and previously found that male heterozygous Nrg1 type III tg mice exhibit several schizophrenia-relevant behaviours including social and cognitive deficits as well as impaired sensorimotor gating. A number of mouse models for other Nrg1 isoform types exhibit sex-specific phenotypes yet sex-specific effects of Nrg1 III overexpression had not been evaluated. Thus, in this study we tested female Nrg1 III transgenic mice using a comprehensive behavioural phenotyping battery relevant to positive, negative and cognitive symptoms of schizophrenia. Firstly, forebrain Nrg1 III mRNA overexpression was confirmed in female transgenic mice using by qPCR. In the open field test, female Nrg1 III mice exhibited a blunted response to an acute challenge with the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801. Female Nrg1 III tg mice also exhibited moderately impaired short-term memory. Other behavioural domains including sensory abilities, motor functions, baseline locomotion, anxiety, sociability, social recognition memory, fear conditioning and prepulse inhibition were unperturbed in Nrg1 III tg females. Together these results illustrate that overexpressing forebrain Nrg1 III in female mice modifies the locomotive response to NMDA receptor antagonism without causing severe alterations to a number of other schizophrenia-related behavioural domains. The data suggest that behavioural effects of Nrg1 III overexpression may be sex-dependent.


Subject(s)
Neuregulin-1/metabolism , Schizophrenia/metabolism , Schizophrenic Psychology , Animals , Brain/metabolism , Disease Models, Animal , Exploratory Behavior , Female , Memory, Short-Term , Mice, Transgenic , Motor Activity/physiology , Neuregulin-1/genetics , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sensory Gating , Sex Characteristics , Social Behavior
5.
Schizophr Bull ; 44(4): 865-875, 2018 06 06.
Article in English | MEDLINE | ID: mdl-28981869

ABSTRACT

Neuregulin 1 (NRG1) is a schizophrenia candidate gene whose protein product is involved in neuronal migration, survival, and synaptic plasticity via production of specific isoforms. Importantly, NRG1 type III (NRG1 III) mRNA is increased in humans inheriting a schizophrenia risk haplotype for the NRG1 gene (HapICE), and NRG1 protein levels can be elevated in schizophrenia. The nature by which NRG1 type III overexpression results in schizophrenia-like behavior and brain pathology remains unclear, therefore we constructed a transgenic mouse with Nrg1 III overexpression in forebrain neurons (CamKII kinase+). Here, we demonstrate construct validity for this mouse model, as juvenile and adult Nrg1 III transgenic mice exhibit an overexpression of Nrg1 III mRNA and Nrg1 protein in multiple brain regions. Furthermore, Nrg1 III transgenic mice have face validity as they exhibit schizophrenia-relevant behavioral phenotypes including deficits in social preference, impaired fear-associated memory, and reduced prepulse inhibition. Additionally, microarray assay of hippocampal mRNA uncovered transcriptional alterations downstream of Nrg1 III overexpression, including changes in serotonin receptor 2C and angiotensin-converting enzyme. Transgenic mice did not exhibit other schizophrenia-relevant behaviors including hyperactivity, social withdrawal, or an increased vulnerability to the effects of MK-801 malate. Our results indicate that this novel Nrg1 III mouse is valid for modeling potential pathological mechanisms of some schizophrenia-like behaviors, for determining what other neurobiological changes may be downstream of elevated NRG1 III levels and for preclinically testing therapeutic strategies that may be specifically efficacious in patients with the NRG1 (HapICE) risk genotype.


Subject(s)
Behavior, Animal/physiology , Disease Models, Animal , Hippocampus/metabolism , Neuregulin-1/metabolism , Schizophrenia/genetics , Schizophrenia/physiopathology , Animals , Male , Mice , Mice, Transgenic
6.
NPJ Schizophr ; 1: 14004, 2015.
Article in English | MEDLINE | ID: mdl-27336026

ABSTRACT

BACKGROUND: Recently, we provided evidence showing reductions in GAD67 and Dlx mRNAs in the orbital frontal cortex (OFC) in schizophrenia. It is unknown whether these reductions relate mainly to somatostatin (SST) or parvalbumin (PV) mRNA expression changes, and/or whether these reductions are related to decreased SST mRNA+ interneuron density. AIMS: To determine whether inhibitory interneuron deficits in the OFC from people with schizophrenia are greatest for SST or PV mRNAs, and whether any such deficits relate to mRNAs encoding cell death signalling molecules. METHODS: Inhibitory interneuron mRNAs (SST; PV: in situ hybridization, quantitative PCR (qPCR)) and death signaling mRNAs [FAS receptor (FASR); TNFSF13: qPCR] were measured in control and schizophrenia subjects (38/38). SST mRNA+ interneuron-like cells were quantified in layer II in the gyrus rectus. Gray matter SST and PV mRNAs were correlated with interstitial white matter neuron (IWMN) density (GAD65/67; NeuN) and death signaling mRNAs. RESULTS: SST mRNA was reduced in OFC layers I-VI in schizophrenia (both in situ and qPCR), with greatest deficit in layer II (67%). Layer II SST mRNA+ neuron density was reduced in schizophrenia (~29%). PV mRNA was reduced in layers III (18%) and IV (31%) with no significant diagnostic difference in PV mRNA measured by qPCR. FASR mRNA was increased in schizophrenia (34%). SST, but not PV, expression correlated negatively with FASR and TNFSF13 expressions and with IWMN density. CONCLUSIONS: Our study demonstrates that SST interneurons are predominantly linked to the inhibitory interneuron pathology in the OFC in schizophrenia and that increased death receptor signaling mRNAs relate to prominent laminar deficits in SST mRNA in the OFC in schizophrenia. We suggest that SST interneurons may be more vulnerable to increased death receptor signaling than PV interneurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...