Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1133342, 2023.
Article in English | MEDLINE | ID: mdl-36937358

ABSTRACT

Edible insects are a natural resource with profound interest in the food industry. Not only because of their nutritional content and technical production advantage, but also for the presence of bioactive compounds known as entomochemicals. These include phenolic, alkaloid, and terpenoid compounds, as well as amino acids derivatives, among others. This work is focused on phenolic compounds, which have been the best characterized due to their role in food development and bioactive properties. The major taxonomic orders studied in this regard include Orthoptera, Coleoptera, and Lepidoptera, whose edible specimens have antioxidant effects provided by the phenolic compounds contained therein. The use of these insects in the development of nutritious foods will enhance the number of options available for the human population. However, depth research is still needed to guarantee the aforementioned bioactivity in processed foods and ensure its innocuity, thus minimizing the risk of allergic reactions and allowing the full utilization of edible insect species in the food industry. Phenolic derived from edible insects portray an opportunity to improve high quality food, as an alternative to diversify and complement an adequate and functional diet. Future development foods supplemented with insects must consider the preservation of potential benefits of not only nutrients, also de nutraceuticals.

2.
Plants (Basel) ; 11(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807662

ABSTRACT

Avocado bronze mite (ABM), Oligonychus punicae Hirst (Trombidiformes: Tetranychidae) has potential for development in several plant species of agricultural importance. ABM is one of the most economically important pests in avocado cultivars, causing major damage to fruit and defoliation. At present, the control of ABM depends mainly on agrochemicals. Therefore, it is necessary to find alternatives to agrochemicals that can help minimize environmental impact and health risks for humans and mammals. The aim of this research was to assess the effect of different concentrations (5, 10, 50, 100, 250, 500, 1000 µg/mL) of ethanolic powdered extract of M. tamaulipana leaves against adult ABM females. The different concentrations of M. tamaulipana extract did not cause mortality of O. punicae. Females treated with 5 and 1000 µg/mL of the extract showed a decrease in the number of eggs laid per female at 24 (5.17 and 1.27), 48 (5.07 and 1.17), and 72 h (4.97 and 0.80), compared to the control treatment (5.20, 6.60 and 6.87), respectively, which led to a reduction in the growth rate. Percentage of feeding damage decreased with the increasing concentration of the extract. The ethanolic powdered extract of M. tamaulipana leaf has potential to control O. punicae.

3.
Molecules ; 26(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33466999

ABSTRACT

Equisetum myriochaetum is a semi-aquatic plant found on riverbanks that is commonly used in traditional medicine as a diuretic agent. Additionally, the genus Equisetum stands out for its content of the flavonoid kaempferol, a well-known antiproliferative agent. Therefore, in this study, E. myriochaetum ethanolic extract was tested in vitro against a cervical cancer cell line (SiHa). Additionally, the antioxidative activity was evaluated through a 2,2-diphenyl-1-picrilhidrazil (DPPH) assay. Finally, a molecular docking analysis of apigenin, kaempferol, and quercetin on the active site of ß-tubulin was performed to investigate their potential mechanism of action. All fractions of E. myriochaetum ethanolic extract showed antioxidative activity. Fraction 14 displayed an antiproliferative capacity with a half maximal inhibitory concentration (IC50) value of 6.78 µg/mL against SiHa cells.


Subject(s)
Antioxidants , Apigenin , Cell Proliferation/drug effects , Equisetum/chemistry , Kaempferols , Molecular Docking Simulation , Neoplasm Proteins/chemistry , Plant Extracts , Quercetin , Tubulin/chemistry , Uterine Cervical Neoplasms , Antioxidants/chemistry , Antioxidants/pharmacology , Apigenin/chemistry , Apigenin/pharmacology , Cell Line, Tumor , Ethanol/chemistry , Female , Humans , Kaempferols/chemistry , Kaempferols/pharmacology , Neoplasm Proteins/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Tubulin/metabolism , Uterine Cervical Neoplasms/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
4.
Molecules ; 24(13)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269738

ABSTRACT

Rhus pachyrrhachis and Rhus virens are medicinal plant species with important uses in northeastern Mexico. They belong to a complex of Rhus species called "lantriscos", which are used for medicinal applications. The medicinal effects of these species are based on traditional use, however, they require phytochemical research to validate their medicinal properties, as well as structural characterization for their correct identification during the collecting practice and uses. The phytochemical potential of aqueous extracts from R. pachyrrhachis and R. virens was analyzed by the quantification of total phenolic content (TPC), free radical-scavenging potential, and total flavonoids, with a comparison of four drying methods, and some phenolic compounds were identified. Furthermore, the stems and leaves of both species were anatomically characterized to establish a differentiation. R. pachyrrhachis and R. virens showed similar values of phytochemical contents, although the TPC content (0.17 mg of gallic acid equivalent per gram of dry weight, GAE/g DW) was higher in R. virens. The drying method used affected the metabolite contents, and this behavior was related to the species. Regarding the phenolic compounds, shikimic acid, galloylquinic acid, and gallic acid were identified in both species, however, quinic acid was only found in Rhus pachyrrhachis, while vanillic acid O-hexoside was identified only in Rhus virens. At the anatomical level, the pubescence associated with trichomes on the leaves of Rhus pachyrrhachis was highlighted as the main differential characteristic.


Subject(s)
Desiccation , Free Radical Scavengers/chemistry , Medicine, Traditional , Phenols/chemistry , Rhus/chemistry , Flavonoids/analysis , Rhus/cytology
5.
Oncotarget ; 8(23): 37773-37782, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28562328

ABSTRACT

PURPOSE: In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. EXPERIMENTAL DESIGN: A small series of fourteen diastereomeric ß-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. ß-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. RESULTS: Better docking scores of the cis- over the trans-ß-lactams indicated favorable ß-lactam-ß-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-ß-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. CONCLUSIONS: Stereochemical preferences of the cis-ß-lactams over their trans-counterparts, toward the molecular target ß-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.


Subject(s)
Molecular Docking Simulation/methods , beta-Lactams/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , beta-Lactams/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...