Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123230, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37586277

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.


Subject(s)
Glioblastoma , Rats , Animals , Glioblastoma/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Proteins , Brain/pathology , Models, Animal
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122086, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36423418

ABSTRACT

Fourier Transform Infrared (FTIR) microspectroscopy is well known for its effectiveness in spectral and biochemical analyses of various materials. It enables to determine the sample biochemical composition by assigning detected frequencies, characteristic for functional groups of main biological macromolecules. In analysis of tissue sections one of two measurement modes, namely transmission and transflection, is usually applied. The first one has relatively straightforward geometry, hence it is considered to be more precise and accurate. However, IR-transparent media are very fragile and expensive. Transflection does not require expensive substrates, but is more prone to disruptive influence of Mie scattering as well as electric field standing wave effect. The excessive comparison of spectra' characteristics, obtained via both measurement modes, was performed in this paper. By the means of Mann-Whitney non-parametrical U test and PCA, the comparison of results obtained with both modes and assessment of usefulness of IR spectra obtained with transmission and transflection modes to differentiate between healthy and GBM-affected tissue, were performed. The main objective of the presented research is to compare the results of FTIR analysis of unfixed biological samples performed with transflection and transmission mode. In frame of the study we demonstrated the discrepancies between results of biochemical analysis performed based on data obtained with transmission and transflection. Such observation suggests that caution should be taken in drawing conclusions from the results obtained with transflection geometry, as its more prone to disruptive effects. Despite that, IR spectra developed with both modes allowed to distinguish GBM area from healthy tissue, which proves their diagnostic potential. Especially, application of the ME-EMSC correction of spectra before PCA enhances the performance of both methods to distinguish the analysed tissue areas.


Subject(s)
Glioblastoma , Humans , Fourier Analysis , Glioblastoma/diagnosis , Spectroscopy, Fourier Transform Infrared , Electricity , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...