Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 13023, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31506576

ABSTRACT

Nano-antennas are replicas of antennas that operate at radio-frequencies, but with considerably smaller dimensions when compared with their radio frequency counterparts. Noble metals based nano-antennas have the ability to enhance photoinduced phenomena such as localized electric fields, therefore-they have been used in various applications ranging from optical sensing and imaging to performance improvement of solar cells. However, such nano-structures can be damaged in high power applications such as heat resisted magnetic recording, solar thermo-photovoltaics and nano-scale heat transfer systems. Having a small footprint, nano-antennas cannot handle high fluences (energy density per unit area) and are subject to being damaged at adequately high power (some antennas can handle just a few milliwatts). In addition, given that nano-antennas are passive devices driven by external light sources, the potential damage of the antennas limits their use with high power lasers: this liability can be overcome by employing materials with high melting points such as chromium (Cr) and tungsten (W). In this article, we fabricate chromium and tungsten nano-antennas and demonstrate that they can handle 110 and 300 times higher fluence than that of gold (Au) counterpart, while the electric field enhancement is not significantly reduced.

2.
Appl Opt ; 56(27): 7611-7617, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-29047738

ABSTRACT

Magnesium diboride (MgB2) is a well-known superconductor at temperatures below 39 K. At higher temperatures, it behaves as a lossy material. In this paper, we examine the performance of MgB2 nano-particles as saturable absorber in a ytterbium-doped fiber ring laser at room temperature: we show that the nano-particles can produce pulses between 200 and 1700 ns. The dynamics of the saturable absorber are both examined as a stand-alone saturable absorber and in combination with an acousto-optic modulator. We believe, to the best of our knowledge, that this is the first time that MgB2 is used as a saturable absorber in a Q-switched laser.

3.
J Phys Chem B ; 115(2): 231-41, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21166390

ABSTRACT

Organic nonlinear electrooptical (ONLO) chromophores must be acentrically ordered for the ONLO material to have electrooptic (EO) activity. The magnitude of the order is characterized by the acentric order parameter, , where ß is the major Euler angle between the main axis of the chromophore and the poling field which imposes the acentric order. The acentric order parameter, which is difficult to measure directly, is related to the centrosymmetric order parameter, defined as = ½(3-1), through the underlying statistical distribution. We have developed a method to determine centrosymmetric order of the ONLO chromophores when the order is low (i.e., < 0.1). We have extended the method (begun by Graf et al. J. Appl. Phys. 1994, 75, 3335.) based on the absorption of light to determine the centrosymmetric order parameter induced by a poling field on a thin film sample of ONLO material. We find that the order parameters, analyzed by two different methods, are similar and also consistent with theoretical estimates from modeling of the system using coarse-grained Monte Carlo statistical mechanical methods.

4.
J Phys Chem B ; 114(37): 11949-56, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20731406

ABSTRACT

Identification of electronic intermolecular electrostatic interactions that can significantly enhance poling-induced order is important to the advancement of the field of organic electro-optics. Here, we demonstrate an example of such improvement achieved through exploitation of the interaction of coumarin pendant groups in chromophore-containing macromolecules. Acentric order enhancement is explained in terms of lattice-symmetry effects, where constraint of orientational degrees of freedom alters the relationship between centrosymmetric and acentric order. We demonstrate both experimentally and theoretically that lattice dimensionality can be defined using the relationship between centrosymmetric order and acentric order. Experimentally: Acentric order is determined by attenuated total reflection measurement of electro-optic activity coupled with hyper-Rayleigh scattering measurement of molecular first hyperpolarizability, and centrosymmetric order is determined by the variable angle polarization referenced absorption spectroscopy method. Theoretically: Order is determined from statistical mechanical models that predict the properties of soft condensed matter.

5.
J Phys Chem B ; 113(47): 15581-8, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19835361

ABSTRACT

For the past three decades, a full understanding of the electro-optic (EO) effect in amorphous organic media has remained elusive. Calculating a bulk material property from fundamental molecular properties, intermolecular electrostatic forces, and field-induced net acentric dipolar order has proven to be very challenging. Moreover, there has been a gap between ab initio quantum-mechanical (QM) predictions of molecular properties and their experimental verification at the level of bulk materials and devices. This report unifies QM-based estimates of molecular properties with the statistical mechanical interpretation of the order in solid phases of electric-field-poled, amorphous, organic dipolar chromophore-containing materials. By combining interdependent statistical and quantum mechanical methods, bulk material EO properties are predicted. Dipolar order in bulk, amorphous phases of EO materials can be understood in terms of simple coarse-grained force field models when the dielectric properties of the media are taken into account. Parameters used in the statistical mechanical modeling are not adjusted from the QM-based values, yet the agreement with the experimentally determined electro-optic coefficient is excellent.

6.
J Am Chem Soc ; 130(32): 10565-75, 2008 Aug 13.
Article in English | MEDLINE | ID: mdl-18642806

ABSTRACT

Two new highly hyperpolarizable chromophores, based on N,N- bis-(4-methoxyphenyl) aryl-amino donors and phenyl-trifluoromethyl-tricyanofuran (CF3-Ph-TCF) acceptor linked together via pi-conjugation through 2,5-divinylenethienyl moieties as the bridge, have been designed and synthesized successfully for the first time. The aryl moieties on the donor side of the chromophore molecules were varied as to be thiophene and 1-n-hexylpyrrole. The linear and nonlinear optical (NLO) properties of all compounds were evaluated in addition to recording relevant thermal and electrochemical data. The properties of the two new molecules were comparatively studied. These results are critically analyzed along with two other compounds, reported earlier from our laboratories and our collaborator's, that contain (i) aliphatic chain-bearing aniline and (ii) dianisylaniline as donors, keeping the bridge (2,5-divinylenethienyl-), and the acceptor (CF3-Ph-TCF), constant. Trends in theoretically (density functional theory, DFT) predicted, zero-frequency gas-phase hyperpolarizability [beta(0;0,0)] values are shown to be consistent with the trends in beta HRS(-2omega;omega,omega), as measured by Hyper-Rayleigh Scattering (HRS), when corrected to zero-frequency using the two-level model (TLM) approximation. Similarly, trends in poling efficiency data (r33/E(p)) and wavelength dispersion measured by reflection ellipsometry (using a Teng-Man apparatus) and attenuated total reflection (ATR) are found to fit the TLM and DFT predictions. A 3-fold enhancement in bulk nonlinearity (r33) is realized as the donor subunits are changed from alkylaniline to dianisylaminopyrrole donors. The results of these studies provide insight into the complicated effects on molecular hyperpolarizability of substituting heteroaromatic subunits into the donor group structures. These studies also demonstrate that, when frequency dependence and electric-field-induced ordering behavior are correctly accounted for, ab initio DFT generated beta(0;0,0) is effective as a predictor of changes in r33 behavior based on chromophore structure modification. Thus DFT can provide valuable insight into the electronic structure origin of complex optical phenomena in organic media.

7.
Opt Express ; 16(9): 6592-9, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18545362

ABSTRACT

Electro-optic polymer waveguides in electron beam sensitive polymethyl methacrylate (PMMA) polymer matrix doped with organic nonlinear chromophores could be directly patterned by electron beam exposure with high resolution and smoothness. The polymer in the exposed regions was removed with standard electron beam resist developer and without damaging the chromophore containing polymer waveguides. Feature sizes on the order of 100 nm could be clearly resolved. High quality microring resonators made of YL124/PMMA electro-optic polymer were successfully fabricated with this technique. The measured resonance extinction ratios were more than 16 dB and quality factors were in the range of 10(3) approximately 10(4).


Subject(s)
Electrons , Optics and Photonics/instrumentation , Polymers/chemistry , Spectrum Analysis
8.
Opt Express ; 16(12): 8472-9, 2008 Jun 09.
Article in English | MEDLINE | ID: mdl-18545561

ABSTRACT

A novel technique for the fabrication of polarization selective electro-optic polymer waveguide devices with direct electron beam writing was described. Birefringence induced by the electric field poling in the electro-optic polymer film was erased in the electron beam exposed regions. The formed waveguides had stronger confinement for the light polarized along the poling direction. High fabrication resolution on the 100 nm scale or smaller could be achieved. Fabrication of polymer polarizer and polarization selective microring resonators with this technique was reported. The highest polarization extinction ratio was measured to be 21.4 dB.


Subject(s)
Electronics/instrumentation , Models, Theoretical , Optics and Photonics/instrumentation , Polymers/chemistry , Refractometry/instrumentation , Birefringence , Computer Simulation , Electromagnetic Fields , Equipment Design , Equipment Failure Analysis , Light , Polymers/radiation effects , Scattering, Radiation
9.
J Am Chem Soc ; 129(24): 7523-30, 2007 Jun 20.
Article in English | MEDLINE | ID: mdl-17523637

ABSTRACT

Extensive experimental and theoretical study suggests that interchromophore electrostatic interactions are among the most severe impediments to the induction and stability of large electro-optic coefficients in electric-field-poled organic materials. In this report, multichromophore-containing dendritic materials have been investigated as a means to minimize unwanted attenuation of nonlinear optical (electro-optic) activity at high chromophore loading. The dendritic molecular architectures employed were designed to provide optimized molecular scaffolding for electric-field-induced molecular reorientation. Design parameters were based upon past experimental results in conjunction with statistical and quantum mechanical modeling. The electro-optic behavior of these materials was evaluated through experimental and theoretical analysis. Experimental data collected from the dendrimer structures depict a reasonably linear relationship between chromophore number density (N) and electro-optic activity (r(33)) demonstrating a deviation from the dipolar frustration that typically limits r(33) in conventional chromophore/polymer composite materials. The observed linear dependence holds at higher chromophore densities than those that have been found to be practical in systems of organic NLO chromophores dispersed in polymer hosts. Theoretical analysis of these results using Monte Carlo modeling reproduces the experimentally observed trends confirming linear dependence of electro-optic activity on N in the dendrimer materials. These results provide new insight into the ordering behavior of EO dendrimers and demonstrate that the frequently observed asymptotic dependence of electro-optic activity on chromophore number density may be overcome through rational design.

10.
J Chem Phys ; 123(5): 054311, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16108643

ABSTRACT

Time- and frequency-resolved pump-probe measurements on NeBr2 have been performed to better characterize its fragmentation dynamics on the B electronic state for vibrational levels in the energy region of the transition from direct vibrational predissociation to intramolecular vibrational relaxation dynamics. Above nu'=20 of the Br2 stretching mode, it was observed that the dependence of lifetime on the vibrational quantum number deviates from the energy-gap law by leveling off in the range of 10 psE transitions of the complex. These transitions are shifted 20 cm(-1) to lower energy from the free Br2 resonances, indicating an E state Ne-Br2 bond energy of 82 cm(-1). Measurements of NeBr2 vibrational predissociation via the delta nu=-2 channel were also performed for nu'=27, 28, and 29. The closing of the delta nu=-1 channel leads to an increase in the lifetimes of these vibrational levels. A new Nd:yttrium aluminum garnet pumped dual optical parametric oscillator/optical parametric amplifier system is described that allows us to conveniently record time-delayed pump-probe spectra with 2-cm(-1) spectral resolution and 15-ps time resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...