Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 69(1): 97-102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34132048

ABSTRACT

African swine fever virus (ASFV) is a current threat to global pork production due to its high case fatality rate, lack of efficacious vaccine and recent transboundary spread into new regions of the world. Preventing introduction and further spread of ASFV is critical for countries currently negative for the virus. ASFV is stable in feed ingredients subjected to transoceanic conditions and transmission occurs through the natural consumption of contaminated feed. In this study, we investigated the use of feed dust collected from experimentally inoculated feed as a novel diagnostic sample type for ASFV detection. Moist swabs were used to collect dust from creep feeders after natural consumption of feed inoculated with 3.1-5.4 log10 TCID50 /g ASFV Georgia 2007 in the presence and absence of antimicrobial feed additives. Results validate the potential use of feed dust swabs as a novel diagnostic surveillance tool for detection and quantification of viral nucleic acid and infectious virus titre in ASFV-contaminated feed.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/diagnosis , African Swine Fever/epidemiology , African Swine Fever/prevention & control , African Swine Fever Virus/genetics , Animals , Dust , Real-Time Polymerase Chain Reaction/veterinary , Swine
2.
Transbound Emerg Dis ; 68(2): 477-486, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32613713

ABSTRACT

African swine fever (ASF) is currently considered the most significant global threat to pork production worldwide. Disease caused by the ASF virus (ASFV) results in high case fatality of pigs. Importantly, ASF is a trade-limiting disease with substantial implications on both global pork and agricultural feed commodities. ASFV is transmissible through natural consumption of contaminated swine feed and is broadly stable across a wide range of commonly imported feed ingredients and conditions. The objective of the current study was to investigate the efficacy of medium-chain fatty acid and formaldehyde-based feed additives in inactivating ASFV. Feed additives were tested in cell culture and in feed ingredients under a transoceanic shipment model. Both chemical additives reduced ASFV infectivity in a dose-dependent manner. This study provides evidence that chemical feed additives may potentially serve as mitigants for reducing the risk of ASFV introduction and transmission through feed.


Subject(s)
African Swine Fever Virus/drug effects , African Swine Fever/prevention & control , Animal Feed/analysis , Antiviral Agents/administration & dosage , African Swine Fever/virology , Animals , Chlorocebus aethiops , Fatty Acids , Food Additives , Swine , Vero Cells
3.
Transbound Emerg Dis ; 67(4): 1623-1632, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31999072

ABSTRACT

Classical swine fever virus (CSFV) and pseudorabies virus (PRV) are two of the most significant trade-limiting pathogens affecting swine worldwide. Both viruses are endemic to China where millions of kilograms of feed ingredients are manufactured and subsequently imported into the United States. Although stability and oral transmission of both viruses through contaminated pork products has been demonstrated as a risk factor for transboundary spread, stability in animal feed ingredients had yet to be investigated. The objective of this study was to determine the survival of CSFV and variant PRV in 12 animal feeds and ingredients exposed to environmental conditions simulating a 37-day transpacific shipment. Virus was detected by PCR, virus isolation and nursery pig bioassay. CSFV and PRV nucleic acids were stable throughout the 37-day period in all feed matrices. Infectious CSFV was detected in two ingredients (conventional soybean meal and pork sausage casings) at 37 days post-contamination, whereas infectious PRV was detected in nine ingredients (conventional and organic soybean meal, lysine, choline, vitamin D, moist cat and dog food, dry dog food and pork sausage casings). This study demonstrates the relative stability of CSFV and PRV in different feed ingredients under shipment conditions and provides evidence that feed ingredients may represent important risk factors for the transboundary spread of these viruses.


Subject(s)
Animal Feed/virology , Classical Swine Fever Virus/isolation & purification , Classical Swine Fever/virology , Herpesvirus 1, Suid/isolation & purification , Pseudorabies/virology , Swine Diseases/virology , Transportation , Animals , China , Classical Swine Fever Virus/pathogenicity , Classical Swine Fever Virus/physiology , DNA, Viral/genetics , Food Contamination , Genes, Viral/genetics , Herpesvirus 1, Suid/pathogenicity , Herpesvirus 1, Suid/physiology , Models, Theoretical , Real-Time Polymerase Chain Reaction/veterinary , Risk Assessment , Risk Factors , Swine
4.
Vet Microbiol ; 235: 10-20, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31282366

ABSTRACT

African Swine Fever Virus (ASFV) causes a hemorrhagic disease in swine and wild boars with a fatality rate close to 100%. Less virulent strains cause subchronic or chronic forms of the disease. The virus is endemic in sub-Saharan Africa and an outbreak in Georgia in 2007 spread to Armenia, Russia, Ukraine, Belarus, Poland, Lithuania, and Latvia. In August 2018, there was an outbreak in China and in April 2019, ASFV was reported in Vietnam and Cambodia. Since no vaccine or treatment exists, a vaccine is needed to safeguard the swine industry. Previously, we evaluated immunogenicity of two adenovirus-vectored cocktails containing ASFV antigens and demonstrated induction of unprecedented robust antibody and T cell responses, including cytotoxic T lymphocytes. In the present study, we evaluated protective efficacy of both cocktails by intranasal challenge of pigs with ASFV-Georgia 2007/1. A nine antigen cocktail-(I) formulated in BioMize adjuvant induced strong IgG responses, but when challenged, the vaccinees had more severe reaction relative to the controls. A seven antigen cocktail-(II) was evaluated using two adjuvants: BioMize and ZTS-01. The BioMize formulation induced stronger antibody responses, but 8/10 vaccinees and 4/5 controls succumbed to the disease or reached experimental endpoint at 17 days post-challenge. In contrast, the ZTS-01 formulation induced weaker antibody responses, but 4/9 pigs succumbed to the disease while the 5 survivors exhibited low clinical scores and no viremia at 17 days post-challenge, whereas 4/5 controls succumbed to the disease or reached experimental endpoint. Overall, none of the immunogens conferred statistically significant protection.


Subject(s)
African Swine Fever/prevention & control , Antibodies, Viral/blood , Antigens, Viral/immunology , Viral Vaccines/immunology , Adenoviridae , Administration, Intranasal , African Swine Fever/immunology , African Swine Fever Virus , Animals , Antigens, Viral/genetics , Immunoglobulin G/blood , Swine , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Subunit/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/genetics , Viremia , Virulence
5.
Emerg Infect Dis ; 25(5): 891-897, 2019 05.
Article in English | MEDLINE | ID: mdl-30761988

ABSTRACT

African swine fever virus (ASFV) is a contagious, rapidly spreading, transboundary animal disease and a major threat to pork production globally. Although plant-based feed has been identified as a potential route for virus introduction onto swine farms, little is known about the risks for ASFV transmission in feed. We aimed to determine the minimum and median infectious doses of the Georgia 2007 strain of ASFV through oral exposure during natural drinking and feeding behaviors. The minimum infectious dose of ASFV in liquid was 100 50% tissue culture infectious dose (TCID50), compared with 104 TCID50 in feed. The median infectious dose was 101.0 TCID50 for liquid and 106.8 TCID50 for feed. Our findings demonstrate that ASFV Georgia 2007 can easily be transmitted orally, although higher doses are required for infection in plant-based feed. These data provide important information that can be incorporated into risk models for ASFV transmission.


Subject(s)
African Swine Fever Virus , African Swine Fever/virology , Animal Feed/virology , African Swine Fever/epidemiology , African Swine Fever/transmission , African Swine Fever Virus/genetics , African Swine Fever Virus/pathogenicity , Animals , Food Microbiology , Georgia , Swine , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...