Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
JCO Precis Oncol ; 8: e2300349, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38237098

ABSTRACT

PURPOSE: Cancer patients with advanced-stage disease have poor prognosis, typically having limited options for efficacious treatment, and genomics-based therapy guidance continues to benefit only a fraction of patients. Next-generation ex vivo approaches, such as cell mass-based response testing (MRT), offer an alternative precision medicine approach for a broader population of patients with cancer, but validation of clinical feasibility and potential impact remain necessary. MATERIALS AND METHODS: We evaluated the clinical feasibility and accuracy of using live-cell MRT to predict patient drug sensitivity. Using a unified measurement workflow with a 48-hour result turnaround time, samples were subjected to MRT after treatment with a panel of drugs in vitro. After completion of therapeutic course, clinical response data were correlated with MRT-based predictions of outcome. Specimens were collected from 104 patients with solid (n = 69) and hematologic (n = 35) malignancies, using tissue formats including needle biopsies, malignant fluids, bone marrow aspirates, and blood samples. Of the 81 (78%) specimens qualified for MRT, 41 (51%) patients receiving physician-selected therapies had treatments matched to MRT. RESULTS: MRT demonstrated high concordance with clinical responses with an odds ratio (OR) of 14.80 (P = .0003 [95% CI, 2.83 to 102.9]). This performance held for both solid and hematologic malignances with ORs of 20.67 (P = .0128 [95% CI, 1.45 to 1,375.57]) and 8.20 (P = .045 [95% CI, 0.77 to 133.56]), respectively. Overall, these results had a predictive accuracy of 80% (P = .0026 [95% CI, 65 to 91]). CONCLUSION: MRT showed highly significant correlation with clinical response to therapy. Routine clinical use is technically feasible and broadly applicable to a wide range of samples and malignancy types, supporting the need for future validation studies.


Subject(s)
Hematologic Neoplasms , Neoplasms , Humans , Neoplasms/drug therapy
3.
Commun Biol ; 5(1): 1295, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435843

ABSTRACT

Functional precision medicine offers a promising complement to genomics-based cancer therapy guidance by testing drug efficacy directly on a patient's tumor cells. Here, we describe a workflow that utilizes single-cell mass measurements with inline brightfield imaging and machine-learning based image classification to broaden the clinical utility of such functional testing for cancer. Using these image-curated mass measurements, we characterize mass response signals for 60 different drugs with various mechanisms of action across twelve different cell types, demonstrating an improved ability to detect response for several slow acting drugs as compared with standard cell viability assays. Furthermore, we use this workflow to assess drug responses for various primary tumor specimen formats including blood, bone marrow, fine needle aspirates (FNA), and malignant fluids, all with reports generated within two days and with results consistent with patient clinical responses. The combination of high-resolution measurement, broad drug and malignancy applicability, and rapid return of results offered by this workflow suggests that it is well-suited to performing clinically relevant functional assessment of cancer drug response.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Cell Count , Workflow , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Nano Lett ; 21(12): 4959-4965, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34110825

ABSTRACT

The Navier slip condition describes the motion of a liquid relative to a neighboring solid surface, with its characteristic Navier slip length being a constitutive property of the solid-liquid interface. Measurement of this slip length is complicated by its small magnitude, expected to be in the nanometer range based on molecular simulations. Here, we report an experimental technique that interrogates the Navier slip length on individual nanoparticles immersed in liquid with subnanometer precision. Proof-of-principle experiments on individual, citrate-stabilized, gold nanoparticles in water give a constant slip length of 2.7 ± 0.6 nm (95% C.I.), independent of particle size. Achieving this feature of size independence is central to any measurement of this constitutive property, which is facilitated through the use of individual particles of varying radii. This demonstration motivates studies that can now validate the wealth of existing molecular simulation data on slip.


Subject(s)
Gold , Metal Nanoparticles , Particle Size , Surface Properties , Water
5.
Proc Natl Acad Sci U S A ; 117(27): 15659-15665, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32581119

ABSTRACT

Cell size is believed to influence cell growth and metabolism. Consistently, several studies have revealed that large cells have lower mass accumulation rates per unit mass (i.e., growth efficiency) than intermediate-sized cells in the same population. Size-dependent growth is commonly attributed to transport limitations, such as increased diffusion timescales and decreased surface-to-volume ratio. However, separating cell size- and cell cycle-dependent growth is challenging. To address this, we monitored growth efficiency of pseudodiploid mouse lymphocytic leukemia cells during normal proliferation and polyploidization. This was enabled by the development of large-channel suspended microchannel resonators that allow us to monitor buoyant mass of single cells ranging from 40 pg (small pseudodiploid cell) to over 4,000 pg, with a resolution ranging from ∼1% to ∼0.05%. We find that cell growth efficiency increases, plateaus, and then decreases as cell cycle proceeds. This growth behavior repeats with every endomitotic cycle as cells grow into polyploidy. Overall, growth efficiency changes 33% throughout the cell cycle. In contrast, increasing cell mass by over 100-fold during polyploidization did not change growth efficiency, indicating exponential growth. Consistently, growth efficiency remained constant when cell cycle was arrested in G2 Thus, cell cycle is a primary determinant of growth efficiency. As growth remains exponential over large size scales, our work finds no evidence for transport limitations that would decrease growth efficiency.


Subject(s)
Biosensing Techniques , Cell Enlargement , Cell Proliferation/genetics , Leukemia, Lymphoid/genetics , Animals , Cell Cycle/genetics , Cell Division/genetics , Cell Line, Tumor , Humans , Leukemia, Lymphoid/pathology , Mice , Microfluidic Analytical Techniques , Polyploidy
6.
ACS Sens ; 5(4): 1230-1238, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32233476

ABSTRACT

As the use of nanoparticles is expanding in many industrial sectors, pharmaceuticals, cosmetics among others, flow-through characterization techniques are often required for in-line metrology. Among the parameters of interest, the concentration and mass of nanoparticles can be informative for yield, aggregates formation or even compliance with regulation. The Suspended Nanochannel Resonator (SNR) can offer mass resolution down to the attogram scale precision in a flow-through format. However, since the readout has been based on the optical lever, operating more than a single resonator at a time has been challenging. Here we present a new architecture of SNR devices with piezoresistive sensors that allows simultaneous readout from multiple resonators. To enable this architecture, we push the limits of nanofabrication to create implanted piezoresistors of nanoscale thickness (∼100 nm) and implement an algorithm for designing SNRs with dimensions optimized for maintaining attogram scale precision. Using 8-in. processing technology, we fabricate parallel array SNR devices which contain ten resonators. While maintaining a precision similar to that of the optical lever, we demonstrate a throughput of 40 000 particles per hour-an order of magnitude improvement over a single device with an analogous flow rate. Finally, we show the capability of the SNR array device for measuring polydisperse solutions of gold particles ranging from 20 to 80 nm in diameter. We envision that SNR array devices will open up new possibilities for nanoscale metrology by measuring not only synthetic but also biological nanoparticles such as exosomes and viruses.


Subject(s)
Gold/chemistry , Microfluidic Analytical Techniques/methods , Nanoparticles/chemistry
7.
Rev Sci Instrum ; 90(8): 085004, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472632

ABSTRACT

Measuring the size of micron-scale particles plays a central role in the biological sciences and in a wide range of industrial processes. A variety of size parameters, such as particle diameter, volume, and mass, can be measured using electrical and optical techniques. Suspended microchannel resonators (SMRs) are microfluidic devices that directly measure particle mass by detecting a shift in resonance frequency as particles flow through a resonating microcantilever beam. While these devices offer high precision for sizing particles by mass, throughput is fundamentally limited by the small dimensions of the resonator and the limited bandwidth with which changes in resonance frequency can be tracked. Here, we introduce two complementary technical advancements that vastly increase the throughput of SMRs. First, we describe a deconvolution-based approach for extracting mass measurements from resonance frequency data, which allows an SMR to accurately measure a particle's mass approximately 16-fold faster than previously possible, increasing throughput from 120 particles/min to 2000 particles/min for our devices. Second, we describe the design and operation of new devices containing up to 16 SMRs connected fluidically in parallel and operated simultaneously on the same chip, increasing throughput to approximately 6800 particles/min without significantly degrading precision. Finally, we estimate that future systems designed to combine both of these techniques could increase throughput by nearly 200-fold compared to previously described SMR devices, with throughput potentially as high as 24 000 particles/min. We envision that increasing the throughput of SMRs will broaden the range of applications for which mass-based particle sizing can be employed.

8.
Nat Methods ; 16(3): 270, 2019 03.
Article in English | MEDLINE | ID: mdl-30783263

ABSTRACT

The version of this paper originally published online contained an error in the x-axis of Fig. 2c: the LatB concentrations should be 0.4 and 1 µM, but during typesetting, the 1 µM label was incorrectly changed to 0.1 µM. The label is now correct in the print, PDF, and HTML versions of the paper. In addition, in the article's online Supplementary Information, Supplementary Video 2 was a duplicate of Supplementary Video 1. The correct versions of both videos are now available online.

9.
Nat Methods ; 16(3): 263-269, 2019 03.
Article in English | MEDLINE | ID: mdl-30742041

ABSTRACT

The monitoring of mechanics in a single cell throughout the cell cycle has been hampered by the invasiveness of mechanical measurements. Here we quantify mechanical properties via acoustic scattering of waves from a cell inside a fluid-filled vibrating cantilever with a temporal resolution of < 1 min. Through simulations, experiments with hydrogels and the use of chemically perturbed cells, we show that our readout, the size-normalized acoustic scattering (SNACS), measures stiffness. To demonstrate the noninvasiveness of SNACS over successive cell cycles, we used measurements that resulted in deformations of < 15 nm. The cells maintained constant SNACS throughout interphase but showed dynamic changes during mitosis. Our work provides a basis for understanding how growing cells maintain mechanical integrity, and demonstrates that acoustic scattering can be used to noninvasively probe subtle and transient dynamics.


Subject(s)
Acoustics , Single-Cell Analysis/methods , Animals , Biomechanical Phenomena , Cell Cycle , Dactinomycin/metabolism , Mice , Microfluidics
10.
Genome Biol ; 19(1): 207, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30482222

ABSTRACT

Mass and growth rate are highly integrative measures of cell physiology not discernable via genomic measurements. Here, we introduce a microfluidic platform enabling direct measurement of single-cell mass and growth rate upstream of highly multiplexed single-cell profiling such as single-cell RNA sequencing. We resolve transcriptional signatures associated with single-cell mass and growth rate in L1210 and FL5.12 cell lines and activated CD8+ T cells. Further, we demonstrate a framework using these linked measurements to characterize biophysical heterogeneity in a patient-derived glioblastoma cell line with and without drug treatment. Our results highlight the value of coupled phenotypic metrics in guiding single-cell genomics.


Subject(s)
Cell Enlargement , Genomics/methods , Microfluidic Analytical Techniques , Single-Cell Analysis/methods , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Humans , Lymphocyte Activation , Mice
11.
Nat Commun ; 9(1): 4784, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429479

ABSTRACT

A fundamental trade-off between flow rate and measurement precision limits performance of many single-cell detection strategies, especially for applications that require biophysical measurements from living cells within complex and low-input samples. To address this, we introduce 'active loading', an automated, optically-triggered fluidic system that improves measurement throughput and robustness by controlling entry of individual cells into a measurement channel. We apply active loading to samples over a range of concentrations (1-1000 particles µL-1), demonstrate that measurement time can be decreased by up to 20-fold, and show theoretically that performance of some types of existing single-cell microfluidic devices can be improved by implementing active loading. Finally, we demonstrate how active loading improves clinical feasibility for acute, single-cell drug sensitivity measurements by deploying it to a preclinical setting where we assess patient samples from normal brain, primary and metastatic brain cancers containing a complex, difficult-to-measure mixture of confounding biological debris.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Animals , Cell Line , Cells, Cultured , Equipment Design , Humans , Mice , Reproducibility of Results , Tumor Cells, Cultured
12.
Nano Lett ; 18(7): 4541-4548, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29947216

ABSTRACT

In nature, adaptive coloration has been effectively utilized for concealment and signaling. Various biological mechanisms have evolved to tune the reflectivity for visible and ultraviolet light. These examples inspire many artificial systems for mimicking adaptive coloration to match the visual appearance to their surroundings. Thermal camouflage, however, has been an outstanding challenge which requires an ability to control the emitted thermal radiation from the surface. Here we report a new class of active thermal surfaces capable of efficient real-time electrical-control of thermal emission over the full infrared (IR) spectrum without changing the temperature of the surface. Our approach relies on electro-modulation of IR absorptivity and emissivity of multilayer graphene via reversible intercalation of nonvolatile ionic liquids. The demonstrated devices are light (30 g/m2), thin (<50 µm), and ultraflexible, which can conformably coat their environment. In addition, by combining active thermal surfaces with a feedback mechanism, we demonstrate realization of an adaptive thermal camouflage system which can reconfigure its thermal appearance and blend itself with the varying thermal background in a few seconds. Furthermore, we show that these devices can disguise hot objects as cold and cold ones as hot in a thermal imaging system. We anticipate that, the electrical control of thermal radiation would impact on a variety of new technologies ranging from adaptive IR optics to heat management for outer space applications.

13.
Nat Commun ; 8(1): 1613, 2017 11 20.
Article in English | MEDLINE | ID: mdl-29151572

ABSTRACT

Multiple myeloma (MM) has benefited from significant advancements in treatment that have improved outcomes and reduced morbidity. However, the disease remains incurable and is characterized by high rates of drug resistance and relapse. Consequently, methods to select the most efficacious therapy are of great interest. Here we utilize a functional assay to assess the ex vivo drug sensitivity of single multiple myeloma cells based on measuring their mass accumulation rate (MAR). We show that MAR accurately and rapidly defines therapeutic susceptibility across human multiple myeloma cell lines to a gamut of standard-of-care therapies. Finally, we demonstrate that our MAR assay, without the need for extended culture ex vivo, correctly defines the response of nine patients to standard-of-care drugs according to their clinical diagnoses. This data highlights the MAR assay in both research and clinical applications as a promising tool for predicting therapeutic response using clinical samples.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Multiple Myeloma/drug therapy , Single-Cell Analysis/methods , Apoptosis/drug effects , Cell Line, Tumor , Humans , Kinetics
14.
Nat Biotechnol ; 34(11): 1161-1167, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27723727

ABSTRACT

Assays that can determine the response of tumor cells to cancer therapeutics could greatly aid the selection of drug regimens for individual patients. However, the utility of current functional assays is limited, and predictive genetic biomarkers are available for only a small fraction of cancer therapies. We found that the single-cell mass accumulation rate (MAR), profiled over many hours with a suspended microchannel resonator, accurately defined the drug sensitivity or resistance of glioblastoma and B-cell acute lymphocytic leukemia cells. MAR revealed heterogeneity in drug sensitivity not only between different tumors, but also within individual tumors and tumor-derived cell lines. MAR measurement predicted drug response using samples as small as 25 µl of peripheral blood while maintaining cell viability and compatibility with downstream characterization. MAR measurement is a promising approach for directly assaying single-cell therapeutic responses and for identifying cellular subpopulations with phenotypic resistance in heterogeneous tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Screening Assays, Antitumor/instrumentation , Lab-On-A-Chip Devices , Micro-Electrical-Mechanical Systems/instrumentation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/physiopathology , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor/methods , Equipment Design , Equipment Failure Analysis , Humans , Micro-Electrical-Mechanical Systems/methods , Neoplasms, Experimental/pathology , Treatment Outcome
15.
Nat Biotechnol ; 34(10): 1052-1059, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27598230

ABSTRACT

Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10-12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4-20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes.


Subject(s)
Cell Proliferation/drug effects , Cell Proliferation/physiology , Drug Evaluation, Preclinical/instrumentation , High-Throughput Screening Assays/instrumentation , Lab-On-A-Chip Devices , Micro-Electrical-Mechanical Systems/instrumentation , Drug Evaluation, Preclinical/methods , Equipment Design , Equipment Failure Analysis , High-Throughput Screening Assays/methods , Micro-Electrical-Mechanical Systems/methods , Reproducibility of Results , Sensitivity and Specificity , Transducers
16.
Nat Commun ; 6: 7070, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25963304

ABSTRACT

Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators.

17.
Proc Natl Acad Sci U S A ; 111(4): 1310-5, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24474753

ABSTRACT

Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in solution. Suspended micro- and nanochannel resonators have opened up the possibility of achieving vacuum-level precision for samples in the aqueous environment and a noise equivalent mass resolution of 27 attograms in 1-kHz bandwidth was previously achieved by Lee et al. [(2010) Nano Lett 10(7):2537-2542]. Here, we report on a series of advancements that have improved the resolution by more than 30-fold, to 0.85 attograms in the same bandwidth, approaching the thermomechanical noise limit and enabling precise quantification of particles down to 10 nm with a throughput of more than 18,000 particles per hour. We demonstrate the potential of this capability by comparing the mass distributions of exosomes produced by different cell types and by characterizing the yield of self-assembled DNA nanoparticle structures.


Subject(s)
Metal Nanoparticles , Exosomes , Gold/chemistry , Limit of Detection , Molecular Weight , Reproducibility of Results , Solutions
18.
PLoS One ; 8(7): e67590, 2013.
Article in English | MEDLINE | ID: mdl-23844039

ABSTRACT

We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.


Subject(s)
DNA/analysis , Lipids/analysis , Proteins/analysis , RNA/analysis , Water/metabolism , Animals , Biological Transport , Deuterium Exchange Measurement , Erythrocytes/chemistry , Escherichia coli/chemistry , Fibroblasts/chemistry , Humans , Mice , Saccharomyces cerevisiae/chemistry , T-Lymphocytes/chemistry
19.
Article in English | MEDLINE | ID: mdl-22899125

ABSTRACT

This paper describes a correction and an extension in the previously published large signal equivalent circuit model for a circular capacitive micromachined ultrasonic transducer (CMUT) cell. The force model is rederived so that the energy and power is preserved in the equivalent circuit model. The model is able to predict the entire behavior of CMUT until the membrane touches the substrate. Many intrinsic properties of the CMUT cell, such as the collapse condition, collapse voltage, the voltage-displacement interrelation and the force equilibrium before and after collapse voltage in the presence of external static force, are obtained as a direct consequence of the model. The small signal equivalent circuit for any bias condition is obtained from the large signal model. The model can be implemented in circuit simulation tools and model predictions are in excellent agreement with finite element method simulations.

20.
Article in English | MEDLINE | ID: mdl-22718878

ABSTRACT

Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.


Subject(s)
Models, Theoretical , Transducers , Ultrasonography/instrumentation , Computer Simulation , Electric Impedance , Electronics, Medical/instrumentation , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...