Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(2): e0246394, 2021.
Article in English | MEDLINE | ID: mdl-33529259

ABSTRACT

INTRODUCTION: Dynamic PET/CT allows visualization of pharmacokinetics over the time, in contrast to static whole body PET/CT. The objective of this study was to assess 68Ga-PSMA-11 uptake in pathological lesions and benign tissue, within 30 minutes after injection in primary prostate cancer (PCa) patients in test-retest setting. MATERIALS AND METHODS: Five patients, with biopsy proven PCa, were scanned dynamically in list mode for 30 minutes on a digital PET/CT-scanner directly after an intravenous bolus injection of 100 MBq 68Ga-PSMA-11. Approximately 45 minutes after injection a static whole body scan was acquired, followed by a one bed position scan of the pelvic region. The scans were repeated approximately four weeks later, without any intervention in between. Semi-quantitative assessment was performed using regions-of-interest in the prostate tumor, bladder, gluteal muscle and iliac artery. Time-activity curves were extracted from the counts in these regions and the intra-patient variability between both scans was assessed. RESULTS: The uptake of the iliac artery and gluteal muscle reached a plateau after 5 and 3 minutes, respectively. The population fell apart in two groups with respect to tumor uptake: in some patients the tumor uptake reached a plateau after 5 minutes, whereas in other patients the uptake kept increasing, which correlated with larger tumor volumes on PET/CT scan. Median intra-patient variation between both scans was 12.2% for artery, 9.7% for tumor, 32.7% for the bladder and 14.1% for the gluteal muscle. CONCLUSION: Dynamic 68Ga-PSMA-11 PET/CT scans, with a time interval of four weeks, are reproducible with a 10% variation in uptake in the primary prostate tumor. An uptake plateau was reached for the iliac artery and gluteal muscle within 5 minutes post-injection. A larger tumor volume seems to be related to continued tumor uptake. This information might be relevant for both response monitoring and PSMA-based radionuclide therapies.


Subject(s)
Gallium Isotopes/analysis , Gallium Radioisotopes/analysis , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Aged , Gallium Isotopes/administration & dosage , Gallium Isotopes/pharmacokinetics , Gallium Radioisotopes/administration & dosage , Gallium Radioisotopes/pharmacokinetics , Humans , Male , Pelvis/pathology , Positron Emission Tomography Computed Tomography , Prostate/pathology , Prostatic Neoplasms/pathology , Tumor Burden
2.
EJNMMI Phys ; 6(1): 17, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31650365

ABSTRACT

BACKGROUND: Cerenkov Luminescence Imaging (CLI) is an emerging technology for intraoperative margin assessment. Previous research only evaluated radionuclide 18-Fluorine (18F); however, for future applications in prostate cancer, 68-Gallium (68Ga) seems more suitable, given its higher positron energy. Theoretical calculations predict that 68Ga should offer a higher signal-to-noise ratio than 18F; this is the first experimental confirmation. The aim of this study is to investigate the technical performance of CLI by comparing 68Ga to 18F. RESULTS: The linearity of the system, detection limit, spatial resolution, and uniformity were determined with the LightPath imaging system. All experiments were conducted with clinically relevant activity levels in vitro, using dedicated phantoms. For both radionuclides, a linear relationship between the activity concentration and detected light yield was observed (R2 = 0.99). 68Ga showed approximately 22 times more detectable Cerenkov signal compared to 18F. The detectable activity concentration after a 120 s exposure time and 2 × 2 binning of 18F was 23.7 kBq/mL and 1.2 kBq/mL for 68Ga. The spatial resolution was 1.31 mm for 18F and 1.40 mm for 68Ga. The coefficient of variance of the uniformity phantom was 0.07 for the central field of view. CONCLUSION: 68Ga was superior over 18F in terms of light yield and minimal detection limit. However, as could be expected, the resolution was 0.1 mm less for 68Ga. Given the clinical constraints of an acquisition time less than 120 s and a spatial resolution < 2 mm, CLI for intraoperative margin assessment using 68Ga could be feasible.

SELECTION OF CITATIONS
SEARCH DETAIL
...