Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(21): 4941-4948, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37212799

ABSTRACT

We perform low-temperature magneto-conductance measurements on Cu and Au thin films with adsorbed chiral molecules and investigate their phase-coherent transport properties. Upon adsorption of chiral molecules, the spin-orbit coupling strength in Cu decreases and the Au films become ferromagnetic as evident from weak localization and antilocalization data. A theoretical model indicates that anisotropy in the molecular tilt angles, provided that the chiral molecules act as magnetic moments, induces a nonvanishing magnetic exchange interaction, causing changes in the spin-orbit coupling strength in Cu and Au. Our work adds a new viewpoint to the plethora of unique phenomena emerging from chiral molecule adsorption on materials.

2.
Sci Adv ; 7(3)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523885

ABSTRACT

An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb. In the normal state of Nb, triplet supercurrents decay over a distance of 5 nm, which is an order of magnitude smaller than the decay of spin-singlet pairs due to the SOC. In the superconducting state of Nb, triplet supercurrents are not able to couple with the singlet wave function and are thus blocked by the absence of available equilibrium states in the singlet gap. The results offer insight into the dynamics between s-wave singlet and s-wave triplet states.

3.
Phys Rev Lett ; 127(26): 267001, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029472

ABSTRACT

Unconventional superconductors are of high interest due to their rich physics, a topical example being topological edge states associated with p-wave superconductivity. A practical obstacle in studying such systems is the very low critical temperature T_{c} that is required to realize a p-wave superconducting phase in a material. We predict that the T_{c} of an intrinsic p-wave superconductor can be significantly enhanced by coupling to a conventional s-wave or d-wave superconductor with a higher critical temperature via an atomically thin ferromagnetic (F) layer. We show that this T_{c} boost is tunable via the direction of the magnetization in F. Moreover, we show that the enhancement in T_{c} can also be achieved using the Zeeman effect of an external magnetic field. Our findings provide a way to increase T_{c} in p-wave superconductors in a controllable way and make the exotic physics associated with such materials more easily accessible experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...