Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Screen ; 4(1): 27-32, 1999.
Article in English | MEDLINE | ID: mdl-10838409

ABSTRACT

Impairment of G protein­coupled seven-transmembrane (7 TM) receptor function has been implicated in a variety of different pathologic conditions, suggesting that the discovery of specific antagonists may lead to the development of successful therapeutic agents. The effect of different agents on receptor-ligand interaction is often measured directly in a receptor binding assay; however, this assay format can be time consuming and does not detect agents that interact at sites distal to the native ligand binding site. Cyclic adenosine monophospate (cAMP) represents a ubiquitous second messenger generated in response to ligand binding to many 7 TM receptors. The present study describes the practical adaptation of scintillation proximity methodology, using FlashPlate (NEN Life Sciences, Boston, MA) technology to evaluate cAMP production. The bioassay is based on competition between endogenously produced cAMP and exogenously added radiolabeled [125I]-cAMP. Cyclic AMP capture is mediated through an anti-cAMP antibody onto a microplate well surface. Removal of unbound radioligand is not necessary because only ligand within #20 mm of the plate surface is detected due to the proximity effect. The data indicate that the use of scintillation proximity technology allows accurate and specific evaluation of G protein­coupled receptor function as measured by cAMP production and is suitable for high throughput screening.

2.
J Biomol Screen ; 4(2): 67-73, 1999.
Article in English | MEDLINE | ID: mdl-10838414

ABSTRACT

The ability to identify active compounds (³hits²) from large chemical libraries accurately and rapidly has been the ultimate goal in developing high-throughput screening (HTS) assays. The ability to identify hits from a particular HTS assay depends largely on the suitability or quality of the assay used in the screening. The criteria or parameters for evaluating the ³suitability² of an HTS assay for hit identification are not well defined and hence it still remains difficult to compare the quality of assays directly. In this report, a screening window coefficient, called ³Z-factor,² is defined. This coefficient is reflective of both the assay signal dynamic range and the data variation associated with the signal measurements, and therefore is suitable for assay quality assessment. The Z-factor is a dimensionless, simple statistical characteristic for each HTS assay. The Z-factor provides a useful tool for comparison and evaluation of the quality of assays, and can be utilized in assay optimization and validation.

3.
J Biomol Screen ; 4(3): 137-142, 1999.
Article in English | MEDLINE | ID: mdl-10838422

ABSTRACT

The combined efforts of the fields of combinatorial chemistry and genomics have significantly increased the number of compounds and therapeutic targets available for screening. The number of compounds will reach into the million range in the near future and provide vast chemical diversity for drug discovery. However, this reservoir of chemical diversity creates downstream hurdles for any screening effort. Properly examining this number of compounds increases investments dramatically, both in the number of dollars spent and amount of limited reagents depleted. Traditional HTS techniques, such as the use of 96-well microtiter plates, have paved the way for faster processing speeds, but are being rapidly overwhelmed by screening demands. Miniaturization of such assays will allow for greater throughput, while concurrently reducing cost. To date, miniaturization efforts have been most successfully applied to bacterial and soluble protein based assays. Questions about the ability to deliver microquantities of mammalian cells without disruption of the cell membrane and/or activation of stress responses have been raised. An assay has been developed in which a human T-cell screen has been adapted to a 1536-well plate format. Through the use of a luciferase reporter gene system, it is shown that a mammalian cell-based assay may be successfully performed in 3 µl and potent inhibitors of the target of interest identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...