Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Found Phys ; 51(4): 82, 2021.
Article in English | MEDLINE | ID: mdl-34720132

ABSTRACT

According to Relational Quantum Mechanics (RQM) the wave function ψ is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, ψ is defined as a computational device encoding observers' information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of an underlying reality described by some ontic state. In this paper we argue that RQM is not affected by the conclusions of PBR's argument; consequently, the alleged inconsistency can be dissolved. To do that, we will thoroughly discuss the very foundations of the PBR theorem, i.e. Harrigan and Spekkens' categorization of ontological models, showing that their implicit assumptions about the nature of the ontic state are incompatible with the main tenets of RQM. Then, we will ask whether it is possible to derive a relational PBR-type result, answering in the negative. This conclusion shows some limitations of this theorem not yet discussed in the literature.

2.
Found Phys ; 51(1): 18, 2021.
Article in English | MEDLINE | ID: mdl-33678811

ABSTRACT

The present essay provides a new metaphysical interpretation of Relational Quantum Mechanics (RQM) in terms of mereological bundle theory. The essential idea is to claim that a physical system in RQM can be defined as a mereological fusion of properties whose values may vary for different observers. Abandoning the Aristotelian tradition centered on the notion of substance, I claim that RQM embraces an ontology of properties that finds its roots in the heritage of David Hume. To this regard, defining what kind of concrete physical objects populate the world according to RQM, I argue that this theoretical framework can be made compatible with (i) a property-oriented ontology, in which the notion of object can be easily defined, and (ii) moderate structural realism, a philosophical position where relations and relata are both fundamental. Finally, I conclude that under this reading relational quantum mechanics should be included among the full-fledged realist interpretations of quantum theory.

3.
Eur J Philos Sci ; 11(1): 18, 2021.
Article in English | MEDLINE | ID: mdl-33365106

ABSTRACT

Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the discussion of its principal implications and consequences, we compare it with the main Bohmian QFTs implementing a particle ontology.

4.
Found Phys ; 50(11): 1315-1345, 2020.
Article in English | MEDLINE | ID: mdl-33268906

ABSTRACT

Harrigan and Spekkens (Found Phys 40:125-157, 2010) provided a categorization of quantum ontological models classifying them as ψ -ontic or ψ -epistemic if the quantum state ψ describes respectively either a physical reality or mere observers' knowledge. Moreover, they claimed that Einstein-who was a supporter of the statistical interpretation of quantum mechanics-endorsed an epistemic view of ψ . In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens' categorization implicitly assumes that a complete description of a quantum system (its ontic state, λ ) only concerns single, individual systems instantiating absolute, intrinsic properties. Secondly, we argue that such assumptions conflict with some current interpretations of quantum mechanics, which employ different ontic states as a complete description of quantum systems. In particular, we will show that, since in the statistical interpretation ontic states describe ensembles rather than individuals, such a view cannot be considered ψ -epistemic. As a consequence, the authors misinterpreted Einstein's view concerning the nature of the quantum state. Next, we will focus on relational quantum mechanics and perspectival quantum mechanics, which in virtue of their relational and perspectival metaphysics employ ontic states λ dealing with relational properties. We conclude that Harrigan and Spekkens' categorization is too narrow and entails an inadequate classification of the mentioned interpretations of quantum theory. Hence, any satisfactory classification of quantum ontological models ought to take into account the variations of λ across different interpretations of quantum mechanics.

5.
Entropy (Basel) ; 20(5)2018 May 18.
Article in English | MEDLINE | ID: mdl-33265471

ABSTRACT

The paper argues that far from challenging-or even refuting-Bohm's quantum theory, the no-hidden-variables theorems in fact support the Bohmian ontology for quantum mechanics. The reason is that (i) all measurements come down to position measurements; and (ii) Bohm's theory provides a clear and coherent explanation of the measurement outcome statistics based on an ontology of particle positions, a law for their evolution and a probability measure linked with that law. What the no-hidden-variables theorems teach us is that (i) one cannot infer the properties that the physical systems possess from observables; and that (ii) measurements, being an interaction like other interactions, change the state of the measured system.

SELECTION OF CITATIONS
SEARCH DETAIL
...