Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Neurorobot ; 17: 1112839, 2023.
Article in English | MEDLINE | ID: mdl-36819005

ABSTRACT

Neuro-robots are a class of autonomous machines that, in their architecture, mimic aspects of the human brain and cognition. As such, they represent unique artifacts created by humans based on human understanding of healthy human brains. European Union's Convention on Roboethics 2025 states that the design of all robots (including neuro-robots) must include provisions for the complete traceability of the robots' actions, analogous to an aircraft's flight data recorder. At the same time, one can anticipate rising instances of neuro-robotic failure, as they operate on imperfect data in real environments, and the underlying AI behind such neuro-robots has yet to achieve explainability. This paper reviews the trajectory of the technology used in neuro-robots and accompanying failures. The failures demand an explanation. While drawing on existing explainable AI research, we argue explainability in AI limits the same in neuro-robots. In order to make robots more explainable, we suggest potential pathways for future research.

2.
Biomimetics (Basel) ; 7(3)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36134931

ABSTRACT

European law now requires AI to be explainable in the context of adverse decisions affecting the European Union (EU) citizens. At the same time, we expect increasing instances of AI failure as it operates on imperfect data. This paper puts forward a neurally inspired theoretical framework called "decision stacks" that can provide a way forward in research to develop Explainable Artificial Intelligence (X-AI). By leveraging findings from the finest memory systems in biological brains, the decision stack framework operationalizes the definition of explainability. It then proposes a test that can potentially reveal how a given AI decision was made.

3.
Sci Total Environ ; 780: 146642, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34001335

ABSTRACT

We propose a biosphere model of convergent interactions between nicotine and neonicotinoids (neonics) within a related framework of nicotinic receptor targeting agents (NrTA) across the globe. We explore how rising global trends in the use nicotine as well as neonics impacts vulnerability, within and across species, and posit that evolutionary conservation at the nicotinic acetylcholine receptor (nAChR) provides an operational strategy map for pathogens and disease. Furthermore, we examine the effects of NrTA exposure on balance within extant and developing ecological niches, food chains, and human societies. We advocate for a global strategy for biomonitoring across agriculture, wildlife, and human centers. Such a strategy would relate emergent pathogenic and infectious diseases, amongst others, along a tractable biological stress pathway. This new framework aims to better prepare society in the face of emergent pandemics through 1. identifying primary chemical drivers that can impact emergent diseases; 2. outlining data-driven strategy options for health and environmental policy decision makers.


Subject(s)
Receptors, Nicotinic , Agriculture , Ecosystem , Humans , Neonicotinoids , Nicotine
4.
Mol Pharmacol ; 97(5): 351-353, 2020 05.
Article in English | MEDLINE | ID: mdl-32238438

ABSTRACT

COVID19 is a devastating global pandemic with epicenters in China, Italy, Spain, and now the United States. While the majority of infected cases appear mild, in some cases, individuals present serious cardiorespiratory complications with possible long-term lung damage. Infected individuals report a range of symptoms from headaches to shortness of breath to taste and smell loss. To that end, less is known about how the virus may impact different organ systems. The SARS-CoV2 virus, which is responsible for COVID19, is highly similar to SARS-CoV. Both viruses have evolved an ability to enter host cells through direct interaction with the angiotensin converting enzyme (ACE) 2 protein at the surface of many cells. Published findings indicate that SARS-CoV can enter the human nervous system with evidence from both postmortem brains and detection in cerebrospinal fluid of infected individuals. Here, we consider the ability of SARS-CoV2 to enter and infect the human nervous system based on the strong expression of the ACE2 target throughout the brain. Moreover, we predict that nicotine exposure through various kinds of smoking (cigarettes, electronic cigarettes, or vape) can increase the risk for COVID19 neuroinfection based on known functional interactions between the nicotinic receptor and ACE2. We advocate for higher surveillance and analysis of neurocomplications in infected cases. SIGNIFICANCE STATEMENT: The COVID19 epidemic has spurred a global public health crisis. While many of the cases requiring hospitalization and intensive medical care center on cardiorespiratory treatment, a growing number of cases present neurological symptoms. Viral entry into the brain now appears a strong possibility with deleterious consequences and an urgent need for addressing.


Subject(s)
Betacoronavirus/pathogenicity , Brain/virology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Smoking/adverse effects , COVID-19 , Humans , Pandemics , Risk , SARS-CoV-2 , Smokers
5.
FEBS J ; 287(17): 3651-3655, 2020 09.
Article in English | MEDLINE | ID: mdl-32189428

ABSTRACT

The recent emergence of COVID-19 has resulted in a worldwide crisis, with large populations locked down and transportation links severed. While approximately 80% of infected individuals have minimal symptoms, around 15-20% need to be hospitalized, greatly stressing global healthcare systems. As of March 10, the death rate appears to be about 3.4%, although this number is highly stratified among different populations. Here, we focus on those individuals who have been exposed to nicotine prior to their exposure to the virus. We predict that these individuals are 'primed' to be at higher risk because nicotine can directly impact the putative receptor for the virus (ACE2) and lead to deleterious signaling in lung epithelial cells.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Nicotine/adverse effects , Pandemics , Receptors, Nicotinic/genetics , Smoking/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Female , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Male , Receptors, Nicotinic/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Severity of Illness Index , Sex Factors , Signal Transduction , Smoking/genetics , Smoking/physiopathology , Spike Glycoprotein, Coronavirus/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
6.
PLoS One ; 15(2): e0228899, 2020.
Article in English | MEDLINE | ID: mdl-32053657

ABSTRACT

Microorganisms are ubiquitous in the biosphere, playing a crucial role in both biogeochemistry of the planet and human health. However, identifying these microorganisms and defining their function are challenging. Widely used approaches in comparative metagenomics, 16S amplicon sequencing and whole genome shotgun sequencing (WGS), have provided access to DNA sequencing analysis to identify microorganisms and evaluate diversity and abundance in various environments. However, advances in parallel high-throughput DNA sequencing in the past decade have introduced major hurdles, namely standardization of methods, data storage, reproducible interoperability of results, and data sharing. The National Ecological Observatory Network (NEON), established by the National Science Foundation, enables all researchers to address queries on a regional to continental scale around a variety of environmental challenges and provide high-quality, integrated, and standardized data from field sites across the U.S. As the amount of metagenomic data continues to grow, standardized procedures that allow results across projects to be assessed and compared is becoming increasingly important in the field of metagenomics. We demonstrate the feasibility of using publicly available NEON soil metagenomic sequencing datasets in combination with open access Metagenomics Rapid Annotation using the Subsystem Technology (MG-RAST) server to illustrate advantages of WGS compared to 16S amplicon sequencing. Four WGS and four 16S amplicon sequence datasets, from surface soil samples prepared by NEON investigators, were selected for comparison, using standardized protocols collected at the same locations in Colorado between April-July 2014. The dominant bacterial phyla detected across samples agreed between sequencing methodologies. However, WGS yielded greater microbial resolution, increased accuracy, and allowed identification of more genera of bacteria, archaea, viruses, and eukaryota, and putative functional genes that would have gone undetected using 16S amplicon sequencing. NEON open data will be useful for future studies characterizing and quantifying complex ecological processes associated with changing aquatic and terrestrial ecosystems.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , Metagenomics/methods , Sequence Analysis, DNA/methods , Archaea/genetics , Bacteria/genetics , DNA, Bacterial/genetics , Databases, Genetic/standards , High-Throughput Nucleotide Sequencing/methods , Metagenome , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/standards , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/standards , Soil , Whole Genome Sequencing/methods , Whole Genome Sequencing/standards
7.
Sci Total Environ ; 701: 134945, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31734483

ABSTRACT

The extensive use of nitrogen (N) fertilizers implicates a paradox: while fertilizers ensure the supply of a large amount of food, they cause negative environmental externalities, including reduced biodiversity, and eutrophic streams and lakes. Moreover, such fertilizers may also result in a major public health hazard: increased antibiotic resistance. This article discusses the critical implications of perturbations in N cycle caused by excessive use of fertilizers and resulting policy implications as they relate to ecosystem services. While there are solutions such as cover crops, these solutions are expensive and inconvenient for farmers. We advocate the use of biological fixation (BF) for staple crops-microbiome mediated natural supply of fixed N. This would involve engineering a microbiome that can be grown cheaply and at industrial scale. Fertilizers resulting from such innovation are termed as "biofertilizers" in this article. Following a qualitative cost-benefit analysis broken down by key stakeholders and a quick exploration of policy frameworks as they relate to the advancement of biofertilizers, we propose a practical pathway of where and how research investments should be directed to make such a solution feasible. We make five policy recommendations for decision-makers to facilitate a successful trajectory for this solution: (1) Future agricultural science should seek to understand how BF might be employed as a practical and efficient strategy. This effort would require that industry and the government partner to establish a pre-competitive research laboratory equipped with the latest state-of-the-art technologies that conduct metagenomic experiments to reveal signature microbiomes and form novel symbiotic connections. (2) To have a smooth ride in the market, ag-bio companies should: (i) create awareness among farmers; (ii) impart skills to farmers in testing and using biofertilizers, and (iii) conduct extensive field tests and more research in studying the scalability potential of such fertilizers. (3)The United States Department of Agriculture (USDA) and state governments should provide research and development (R&D) tax credits to biotech companies specifically geared towards R&D investments aimed at increasing the viability of BF and microbiome engineering. (4) To control agricultural pollution in the biosphere, federal governments should consider passing a Clean Agriculture Act (CAA), including a specific clause that regulate the use of chemical fertilizers. (5) Governments and the UN Food and Agriculture Organization (FAO) should coordinate Biological Advanced Research in Agriculture (BARA)-a global agricultural innovation initiative for investments and research in biological fixation and ethical, legal, and social implications of such innovation. While biological fixation will be central in BARA, we envision it to conduct research around other agricultural innovations as well, such as increasing photosynthetic efficiency.


Subject(s)
Air Pollution/analysis , Crops, Agricultural , Environmental Policy , Nitrogen/analysis , Agriculture , Air Pollution/legislation & jurisprudence , Air Pollution/statistics & numerical data , Biodiversity , Conservation of Natural Resources , Crop Production , Ecosystem , Environmental Pollution , Fertilizers
8.
Front Neurosci ; 13: 666, 2019.
Article in English | MEDLINE | ID: mdl-31316340

ABSTRACT

The Artificial Intelligence (AI) revolution foretold of during the 1960s is well underway in the second decade of the twenty first century. Its period of phenomenal growth likely lies ahead. AI-operated machines and technologies will extend the reach of Homo sapiens far beyond the biological constraints imposed by evolution: outwards further into deep space, as well as inwards into the nano-world of DNA sequences and relevant medical applications. And yet, we believe, there are crucial lessons that biology can offer that will enable a prosperous future for AI. For machines in general, and for AI's especially, operating over extended periods or in extreme environments will require energy usage orders of magnitudes more efficient than exists today. In many operational environments, energy sources will be constrained. The AI's design and function may be dependent upon the type of energy source, as well as its availability and accessibility. Any plans for AI devices operating in a challenging environment must begin with the question of how they are powered, where fuel is located, how energy is stored and made available to the machine, and how long the machine can operate on specific energy units. While one of the key advantages of AI use is to reduce the dimensionality of a complex problem, the fact remains that some energy is required for functionality. Hence, the materials and technologies that provide the needed energy represent a critical challenge toward future use scenarios of AI and should be integrated into their design. Here we look to the brain and other aspects of biology as inspiration for Biomimetic Research for Energy-efficient AI Designs (BREAD).

9.
Malays J Med Sci ; 18(2): 1-2, 2011 Apr.
Article in English | MEDLINE | ID: mdl-22135580

ABSTRACT

The International Decade of the Mind Project seeks to harness science across multiple disciplines to discover how human "mind" emerges from the biological activity of human brains. Given the complexity of the human brain, with approximately 10(11) neurons each with 10(4) connections, the effort will be daunting and require resources and expertise from many nations. The Decade of the Mind Project began as a United States initiative in 2007 and expanded to Europe in 2009 and then Asia in 2010. Here we advocate for a team-based approach to the Decade of the Mind initiative, where each nation contributes to the overall scientific effort with its own indigenous scientific expertise.

SELECTION OF CITATIONS
SEARCH DETAIL