Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Elife ; 32014 Oct 06.
Article in English | MEDLINE | ID: mdl-25285450

ABSTRACT

Regulation of food intake is fundamental to energy homeostasis in animals. The contribution of non-nutritive and metabolic signals in regulating feeding is unclear. Here we show that enteric neurons play a major role in regulating feeding through specialized mechanosensory ion channels in Drosophila. Modulating activities of a specific subset of enteric neurons, the posterior enteric neurons (PENs), results in sixfold changes in food intake. Deficiency of the mechanosensory ion channel PPK1 gene or RNAi knockdown of its expression in the PENS result in a similar increase in food intake, which can be rescued by expression of wild-type PPK1 in the same neurons. Finally, pharmacological inhibition of the mechanosensory ion channel phenocopies the result of genetic interrogation. Together, our study provides the first molecular genetic evidence that mechanosensory ion channels in the enteric neurons are involved in regulating feeding, offering an enticing alternative to current therapeutic strategy for weight control.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Eating , Enteric Nervous System/cytology , Mechanotransduction, Cellular , Neurons/metabolism , Sodium Channels/metabolism , Animals , Drosophila melanogaster/cytology , Feeding Behavior
2.
Environ Sci Pollut Res Int ; 21(17): 10194-204, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24859701

ABSTRACT

In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation.


Subject(s)
Arsenic/chemistry , Coal Ash/chemistry , Copper/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Arsenic/analysis , Coal , Copper/analysis , Environmental Pollution/prevention & control , Soil Pollutants/analysis
3.
Chemosphere ; 93(11): 2839-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24144464

ABSTRACT

Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials.


Subject(s)
Environmental Restoration and Remediation/methods , Mining , Refuse Disposal/methods , Soil Pollutants/chemistry , Soil/chemistry , Water Pollutants, Chemical/chemistry , Coal , Sewage/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
4.
Antimicrob Agents Chemother ; 57(11): 5500-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23979732

ABSTRACT

BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.


Subject(s)
Drug Resistance, Multiple, Viral/genetics , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , Mutation , Reverse Transcriptase Inhibitors/pharmacology , Thymidine/analogs & derivatives , Drug Resistance, Multiple, Viral/drug effects , HIV Infections/drug therapy , HIV Infections/virology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , HIV-1/genetics , HIV-1/isolation & purification , Humans , Microbial Sensitivity Tests , Mutagenesis, Site-Directed , Thymidine/pharmacology
5.
J Forensic Sci ; 58(4): 1008-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23692353

ABSTRACT

Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints.

6.
Talanta ; 103: 20-7, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23200353

ABSTRACT

Noninvasive standoff deep Raman spectroscopy has been utilised for the detection of explosives precursors in highly fluorescing packaging from 15m. To our knowledge this is the first time standoff deep Raman spectroscopy of concealed substances in highly fluorescing coloured packaging is demonstrated. Time-resolved Raman spectroscopy, spatially offset Raman spectroscopy and time-resolved spatially offset Raman spectroscopy have been compared to identify their selectivity towards the deep layers of a sample. The selectivity of time-resolved Raman spectroscopy towards the concealed chemical substances was found to be comparable to that of spatially offset Raman spectroscopy. However, time-resolved Raman spectroscopy did not require precise translation of the laser excitation beam onto the surface of the interrogated packaging as in the case of spatially offset Raman spectroscopy. Our results confirm that standoff time-resolved spatially offset Raman spectroscopy has significantly higher selectivity towards the deep layers of a sample when compared to the other deep Raman spectroscopy modes. The developed spectrometer was capable of detecting the concealed substances within 5s of data acquisition. By using time-resolved spatially Raman spectroscopy, a Raman spectrum that is representative of the content alone was acquired without the use of sophisticated algorithms to eliminate the spectral contributions of the packaging material within the acquired spectrum as in the case of time-resolved Raman spectroscopy and spatially offset Raman spectroscopy.


Subject(s)
Drug Packaging , Explosive Agents/analysis , Fluorescence , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Algorithms , Humans , Signal-To-Noise Ratio
7.
Environ Technol ; 34(21-24): 3177-82, 2013.
Article in English | MEDLINE | ID: mdl-24617077

ABSTRACT

This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg(0.577) L(0.423) g(-1) and 16.9 mg(0.478) L(0.522) g(-1) for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg(-1) at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application.


Subject(s)
Acids/chemistry , Coal Ash/chemistry , Conservation of Natural Resources/methods , Phosphates/isolation & purification , Sewage/chemistry , Wastewater/analysis , Water Purification/methods , Dairying , Industrial Waste/prevention & control , Mining , Phosphates/chemistry , Water Quality
8.
FEBS Lett ; 586(20): 3716-22, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-22982858

ABSTRACT

Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park et al., 2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where seven UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability.


Subject(s)
Codon, Terminator/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Deletion , Peptide Termination Factors/deficiency , Peptide Termination Factors/genetics , Phosphoserine/metabolism , Protein Biosynthesis/genetics , Amino Acid Sequence , Base Sequence , Escherichia coli/cytology , Escherichia coli/growth & development , Escherichia coli/metabolism , Genome, Bacterial/genetics , Molecular Sequence Data , Phenotype , Proteome/genetics
9.
Talanta ; 94: 342-7, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22608458

ABSTRACT

Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems.


Subject(s)
Barium Sulfate/analysis , Chemical Warfare Agents/analysis , Explosive Agents/analysis , Methane/analogs & derivatives , Nitrates/analysis , Nitroparaffins/analysis , Spectrum Analysis, Raman/methods , Humans , Lasers , Methane/analysis , Signal-To-Noise Ratio , Time Factors
10.
Appl Spectrosc ; 66(5): 530-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22524958

ABSTRACT

In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for noninvasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform noninvasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.


Subject(s)
Complex Mixtures/analysis , Counterfeit Drugs/analysis , Illicit Drugs/analysis , Spectrum Analysis, Raman/methods , Acetaminophen/analysis , Caffeine/analysis , Forensic Sciences , Least-Squares Analysis , Multivariate Analysis , Phenylephrine/analysis , Principal Component Analysis
11.
Anal Bioanal Chem ; 403(1): 255-63, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22315104

ABSTRACT

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

12.
Forensic Sci Int ; 212(1-3): 69-77, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21664083

ABSTRACT

Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically specific analysis and detection of drugs and pharmaceuticals.


Subject(s)
Drug Packaging , Forensic Sciences/methods , Illicit Drugs/analysis , Pharmaceutical Preparations/analysis , Spectrum Analysis, Raman/methods , Humans , Substance Abuse Detection
13.
J Photochem Photobiol B ; 93(2): 88-93, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18755599

ABSTRACT

Vitamin D deficiency is a major health concern worldwide. Very little is understood regarding its production in the human body by exposure to UV radiation. In particular, we have no means of predicting how much vitamin D (cholecalciferol) will be produced in the skin after exposure to sunlight. Using a refined in vitro model, we found that there is a nonlinear relationship between UV dose and cholecalciferol synthesis. Two minimal erythemal doses (MED) of UV radiation produced 1.84 microg/mL of cholecalciferol whereas 4 MED produced 2.81 microg/mL. We also found that the production of cholecalciferol is restricted by the initial concentration of its precursor (7-dehydrocholesterol, 7-DHC). For example, using an initial concentration of 7-DHC of 102 microg/mL, the resultant cholecalciferol production was 1.05 microg/mL after receiving 4 MED exposure. Under the same exposure conditions, an initial concentration of 305 microg/mL yielded 2.81 g/mL of cholecalciferol. The data presented in this paper has important implications for humans, including: (1) increasing UV exposure does not result in a proportionate increase in the amount of cholecalciferol that is produced; and (2) the initial concentration of 7-DHC in the skin may impact the amount of cholecalciferol that can be synthesized. When translating these results to population groups, we will discuss how the sun exposure message needs to be carefully formulated to account for such considerations.


Subject(s)
Cholecalciferol/biosynthesis , Cholecalciferol/radiation effects , Chromatography, High Pressure Liquid , Dehydrocholesterols/metabolism , Dehydrocholesterols/radiation effects , Dose-Response Relationship, Radiation , Humans , In Vitro Techniques , Models, Biological , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays
14.
J Photochem Photobiol B ; 86(3): 234-9, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17142054

ABSTRACT

The literature reports strong correlations between UV exposure and latitude gradients of diseases. Evidence is emerging about the protective effects of UV exposure for cancer (breast, colo-rectal, prostate), autoimmune diseases (multiple sclerosis, type II diabetes) and even mental disorders, such as schizophrenia. For the first time, the available levels of vitamin D producing UV or "vitamin D UV" (determined from the previtamin D action spectrum) and erythemal (sunburning) UV from throughout the USA are measured and compared, using measurements from seven locations in the USA are measured and compared, using measurements from seven locations in the US EPA's high accuracy Brewer Spectrophotometer network. The data contest longstanding beliefs on the location-dependence and latitude gradients of vitamin D UV. During eight months of the year centered around summer (March-October), for all sites (from 18 degrees N to 44 degrees N latitude) the level of vitamin D UV relative to erythemal UV was equal (within the 95% confidence interval of the mean level). Therefore, there was no measured latitude gradient of vitamin D UV during the majority of the year across the USA. During the four cooler months (November-February), latitude strongly determines vitamin D UV. As latitude increases, the amount of vitamin D UV decreases dramatically, which may inhibit vitamin D synthesis in humans. Therefore, a larger dose of UV relative to erythemal UV is required to produce the same amount of vitamin D in a high latitude location. However, the data shows that at lower latitude locations (<25 degrees N), wintertime vitamin D UV levels are equal to summertime levels, and the message of increasing UV exposure during winter is irrelevant and may lead to excessive exposure. All results were confirmed by computer modeling, which was also used to generalize the conclusions for latitudes from 0 degrees to 70 degrees N. The results of this paper will impact on research into latitudinal gradients of diseases. In particular, it may no longer be correct to assume vitamin D levels in populations follow significant latitude gradients for a large proportion of the year.


Subject(s)
Geography , Ultraviolet Rays , Vitamin D/biosynthesis , Computer Simulation , Humans , Seasons , Skin/metabolism , Skin/radiation effects , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...