Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 21(17): 10194-204, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24859701

ABSTRACT

In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation.


Subject(s)
Arsenic/chemistry , Coal Ash/chemistry , Copper/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Arsenic/analysis , Coal , Copper/analysis , Environmental Pollution/prevention & control , Soil Pollutants/analysis
2.
Chemosphere ; 93(11): 2839-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24144464

ABSTRACT

Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials.


Subject(s)
Environmental Restoration and Remediation/methods , Mining , Refuse Disposal/methods , Soil Pollutants/chemistry , Soil/chemistry , Water Pollutants, Chemical/chemistry , Coal , Sewage/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
3.
Environ Technol ; 34(21-24): 3177-82, 2013.
Article in English | MEDLINE | ID: mdl-24617077

ABSTRACT

This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg(0.577) L(0.423) g(-1) and 16.9 mg(0.478) L(0.522) g(-1) for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg(-1) at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application.


Subject(s)
Acids/chemistry , Coal Ash/chemistry , Conservation of Natural Resources/methods , Phosphates/isolation & purification , Sewage/chemistry , Wastewater/analysis , Water Purification/methods , Dairying , Industrial Waste/prevention & control , Mining , Phosphates/chemistry , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...