Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS One ; 18(1): e0277442, 2023.
Article in English | MEDLINE | ID: mdl-36662847

ABSTRACT

BACKGROUND: Recent preclinical studies have demonstrated that bone marrow (BM)-derived Muse cells have a homing mechanism to reach damaged cardiac tissue while also being able to reduce myocardial infarct size and improve cardiac function; however, the potential of BM-Muse cells to foster new blood-vessel formation has not been fully assessed. Up to date, adipose tissue (AT)-derived Muse cells remain to be studied in acute myocardial infarction (AMI). The aim of the present study was to analyze in vitro and in vivo the neovascularization capacity of AT-Muse cells while exploring their biodistribution and differentiation potential in a translational ovine model of AMI. METHODS AND RESULTS: AT-Muse cells were successfully isolated from ovine adipose tissue. In adult sheep, one or more diagonal branches of the left anterior descending coronary artery were permanently ligated for thirty minutes. Sheep were randomized in two groups and treated with intramyocardial injections: Vehicle (PBS, n = 4) and AT-Muse (2x107 AT-Muse cells labeled with PKH26 Red Fluorescent Dye, n = 4). Molecular characterization showed higher expression of angiogenic genes (VEGF, PGF and ANG) and increased number of tube formation in AT-Muse cells group compared to Adipose-derived mesenchymal stromal cells (ASCs) group. At 7 days post-IAM, the AT-Muse group showed significantly more arterioles and capillaries than the Vehicle group. Co-localization of PKH26+ cells with desmin, sarcomeric actin and troponin T implied the differentiation of Muse cells to a cardiac fate; moreover, PKH26+ cells also co-localized with a lectin marker, suggesting a possible differentiation to a vascular lineage. CONCLUSION: Intramyocardially administered AT-Muse cells displayed a significant neovascularization activity and survival capacity in an ovine model of AMI.


Subject(s)
Alprostadil , Myocardial Infarction , Animals , Sheep , Alprostadil/metabolism , Tissue Distribution , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Adipocytes/metabolism
2.
Comput Struct Biotechnol J ; 20: 3779-3782, 2022.
Article in English | MEDLINE | ID: mdl-35891794

ABSTRACT

Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering.

3.
Cytotherapy ; 22(10): 563-572, 2020 10.
Article in English | MEDLINE | ID: mdl-32723595

ABSTRACT

BACKGROUND AIMS: Peripheral arterial disease (PAD) is a progressive, disabling ailment for which no effective treatment exists. Gene therapy-mediated neovascularization has emerged as a potentially useful strategy. We tested the angiogenic and arteriogenic efficacy and safety of a baculovirus (BV) encoding mutant, oxygen-resistant hypoxia-inducible factor 1-alpha (mHIF-1α), in rabbits with PAD. METHODS: After assessing the transfection efficiency of the BV.mHIF-1α vector and its tubulogenesis potential in vitro, we randomized rabbits with experimental PAD to receive 1 × 109 copies of BV.mHIF-1α or BV.null (n = 6 per group) 7 days after surgery. Two weeks post-treatment, collateralization (digital angiography) and capillary and arteriolar densities (immunohistochemistry) were measured in the posterior limbs. Ischemic damage was evaluated in adductor and gastrocnemius muscle samples. Tracking of viral DNA in injected zones and remote tissues at different time points was performed in additional rabbits using a BV encoding GFP. RESULTS: Angiographically visible collaterals were more numerous in BV.mHIF-1α-treated rabbits (8.12 ± 0.42 vs 6.13 ± 1.15 collaterals/cm2, P < 0.05). The same occurred with arteriolar (27.9 ± 7.0 vs 15.3 ± 4.0 arterioles/mm2) and capillary (341.8 ± 109.9 vs 208.8 ± 87.7 capillaries/mm2, P < 0.05) densities. BV.mHIF-1α-treated rabbits displayed less ischemic muscle damage than BV.null-treated animals. Viral DNA and GFP mRNA were detectable only at 3 and 7 days after injection in hind limbs. Neither the virus nor GFP mRNA was detected in remote tissues. CONCLUSIONS: In rabbits with PAD, BV.mHIF-1α induced neovascularization and reduced ischemic damage, exhibiting a good safety profile at 14 days post-treatment. Complementary studies to evaluate its potential usefulness in the clinic are needed.


Subject(s)
Baculoviridae/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Ischemia/therapy , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Neovascularization, Physiologic , Peripheral Arterial Disease/therapy , Animals , Arterioles , Disease Models, Animal , Gene Expression , Genetic Therapy , Hindlimb/blood supply , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia/pathology , Microvessels/pathology , Peripheral Arterial Disease/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits , Transfection
4.
Am J Physiol Heart Circ Physiol ; 318(4): H994-H1007, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32167779

ABSTRACT

The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting. Thus we aimed at characterizing the transcriptomic profiles of the early fetal, late fetal, and adult sheep heart by employing RNA-seq technique and bioinformatic analysis to detect protein-encoding genes that in some of the stages were turned off, turned on, or differentially expressed. Genes earlier proposed as positive cell cycle regulators such as cyclin A, cdk2, meis2, meis3, and PCNA showed higher expression in fetal hearts and lower in AH, as expected. In contrast, genes previously proposed as cell cycle inhibitors, such as meis1, p16, and sav1, tended to be higher in fetal than in adult hearts, suggesting that these genes are involved in cell processes other than cell cycle regulation. Additionally, we described Gene Ontology (GO) enrichment of different sets of genes. GO analysis revealed that differentially expressed gene sets were mainly associated with metabolic and cellular processes. The cell cycle-related genes fam64a, cdc20, and cdk1, and the metabolism-related genes pitx and adipoq showed strong differential expression between fetal and adult hearts, thus being potent candidates to be targeted in human cardiac regeneration strategies.NEW & NOTEWORTHY We characterized the transcriptomic profiles of the fetal and adult sheep hearts employing RNAseq technique and bioinformatic analyses to provide sets of transcripts whose variation in expression level may link them to a specific role in cell cycle regulation. It is important to remark that this study was performed in a large mammal closer to humans than laboratory rodents. In consequence, the results can be used for further translational studies in cardiac regeneration.


Subject(s)
Gene Expression Regulation, Developmental , Heart/physiology , Myocardium/metabolism , Regeneration , Transcriptome , Animals , Cyclin A/genetics , Cyclin A/metabolism , Female , Heart/growth & development , Male , Sheep , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Biochimie ; 163: 108-116, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31185266

ABSTRACT

Insulin-like growth factor 1 (IGF1) has a critical role in maintaining tumor phenotype and survival of already transformed murine pheochromocytoma (pheo) cells (MPC4/30) and it is required for the initial establishment of these tumors. However, the role of local IGF1/IGF1R system in tumor microenvironment has not been fully understood. In vivo, by subcutaneous injection of pheo cells in heterozygous IGF1R knockout mice (L/n), we found that the time of noticeable tumor appearance was delayed, and incidence was decreased in L/n group compared to control (L/L) mice. Once established, tumor proliferation, vascularization or growth rate did not differ between groups. In vitro, fibroblast from L/n and L/L mice were cultured to generate conditioned media (CM) and differential matrixes on which pheo cells were seeded. Proliferation rate was higher when pheo cells were cultured with CM, or in differential matrix generated by L/L murine fibroblasts. A diminished fibronectin (FN) expression and secretion from L/n fibroblast was associated with decreased expression of integrin subunits in tumor cells. Also, soluble factors as IGF1 and insulin-like growth factor binding protein 2 (IGFBP2) were reduced. Our data suggest that IGF1 signaling through IGF1R may contribute to tumor cells anchorage and survival by interaction with both matrix and soluble factors produced by tumor microenvironment fibroblasts.


Subject(s)
Adrenal Gland Neoplasms/physiopathology , Cell Proliferation , Fibroblasts/metabolism , Haploinsufficiency , Pheochromocytoma/physiopathology , Receptor, IGF Type 1/genetics , Tumor Microenvironment , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Animals , Fibronectins/genetics , Gene Expression Regulation, Neoplastic , Male , Mice , Neovascularization, Pathologic , Pheochromocytoma/genetics , Pheochromocytoma/metabolism
6.
J Am Heart Assoc ; 5(7)2016 07 06.
Article in English | MEDLINE | ID: mdl-27385426

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stromal cells (BMMSCs) are cardioprotective in acute myocardial infarction (AMI) because of release of paracrine angiogenic and prosurvival factors. Hypoxia-inducible factor 1-α (HIF1-α), rapidly degraded during normoxia, is stabilized during ischemia and upregulates various cardioprotective genes. We hypothesized that BMMSCs engineered to overexpress mutant, oxygen-resistant HIF1-α would confer greater cardioprotection than nontransfected BMMSCs in sheep with AMI. METHODS AND RESULTS: Allogeneic BMMSCs transfected with a minicircle vector encoding mutant HIF1-α (BMMSC-HIF) were injected in the peri-infarct of sheep (n=6) undergoing coronary occlusion. Over 2 months, infarct volume measured by cardiac magnetic resonance (CMR) imaging decreased by 71.7±1.3% (P<0.001), and left ventricular (LV) percent ejection fraction (%EF) increased near 2-fold (P<0.001) in the presence of markedly decreased end-systolic volume. Sheep receiving nontransfected BMMSCs (BMMSC; n=6) displayed less infarct size limitation and percent LVEF improvement, whereas in placebo-treated animals (n=6), neither parameters changed over time. HIF1-α-transfected BMMSCs (BMMSC-HIF) induced angio-/arteriogenesis and decreased apoptosis by HIF1-mediated overexpression of erythropoietin, inducible nitrous oxide synthase, vascular endothelial growth factor, and angiopoietin-1. Cell tracking using paramagnetic iron nanoparticles in 12 additional sheep revealed enhanced long-term retention of BMMSC-HIF. CONCLUSIONS: Intramyocardial delivery of BMMSC-HIF reduced infarct size and improved LV systolic performance compared to BMMSC, attributed to increased neovascularization and cardioprotective effects induced by HIF1-mediated overexpression of paracrine factors and enhanced retention of injected cells. Given the safety of the minicircle vector and the feasibility of BMMSCs for allogeneic application, this treatment may be potentially useful in the clinic.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/therapy , Animals , Disease Models, Animal , Flow Cytometry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoblotting , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Sheep
7.
Cytotechnology ; 68(4): 665-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-25432330

ABSTRACT

The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 10(6)) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI.

8.
Int J Cardiol ; 165(2): 291-8, 2013 May 10.
Article in English | MEDLINE | ID: mdl-21944383

ABSTRACT

BACKGROUND: In reperfused acute myocardial infarction (RAMI), cardioprotective treatments may enhance myocardial salvage and hence reduce the area of necrosis. Based on studies showing that plasmid-mediated vascular endothelial growth factor (pVEGF) gene transfer reduces infarct size by combining angio-arteriogenic and cardiomyogenic effects and that erythropoietin (EPO) exerts anti-apoptotic actions in animal models of AMI, we aimed to assess if their association would reduce infarct size to a larger extent than any of them individually in a large mammalian model of RAMI. METHODS: Adult sheep subjected to 90-minute coronary artery occlusion received upon reperfusion intramyocardial pVEGF 3.8 mg plus intravenous EPO 1000 IU/kg (n=8), pVEGF (n=8), EPO (n=8) or placebo (n=8). RESULTS: Fifteen days after treatment, infarct size was smaller in the 3 treatment groups (pVEGF+EPO: 8 ± 1 %; pVEGF: 16 ± 5 %; EPO: 13 ± 4 %) compared to placebo (25 ± 7 %, p<0.001). However, in the EPO+VEGF group infarct size was significantly smaller than in the groups receiving EPO or VEGF individually (p<0.05). DNA fragmentation, a hallmark of late apoptosis, was significantly lower in sheep receiving EPO. The combined treatment, while not affecting global left ventricular performance, improved regional peri-infarct function and prevented over-time expansion of the post-infarct perfusion defect. CONCLUSIONS: Combined pVEGF and EPO treatment might be clinically useful to enhance the benefits of early revascularization in patients with acute myocardial infarction.


Subject(s)
Erythropoietin/administration & dosage , Gene Transfer Techniques , Myocardial Infarction/drug therapy , Myocardial Reperfusion/methods , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Animals , Drug Therapy, Combination , Humans , Male , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Sheep, Domestic , Ventricular Function, Left/drug effects , Ventricular Function, Left/physiology
9.
J Gene Med ; 14(4): 279-87, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21954009

ABSTRACT

BACKGROUND: In large mammalian models of acute myocardial infarction (AMI), plasmid-mediated vascular endothelial growth factor (pVEGF) gene transfer has been shown to induce angio-arteriogenesis, proliferation of myocyte precursors and adult cardiomyocyte mitosis, reducing infarct size at 15 days after coronary artery occlusion. However, it is unknown whether these effects persist at longer follow-up times, nor how they affect cardiac performance. We thus assessed infarct size, left ventricular (LV) function and perfusion in 2-month-old ovine AMI. METHODS: Adult sheep with coronary artery occlusion were randomized to blindly receive ten intramyocardial injections of 3.8 mg of pVEGF or empty plasmid distributed at the infarct border. Three and 60 days later, LV perfusion (single-photon emission computed tomography) and function (stress echocardiography) were assessed. Finally, hemodynamics (LV catheterization), scar size and peri-infarct histology were studied. RESULTS: Infarct size was 30% smaller in pVEGF-treated sheep (23.6 ± 1.9% versus 32.7 ± 2.7% of the LV; p < 0.02). Percentage fractional shortening and wall thickening at the infarct border improved after pVEGF, as did myocardial perfusion and LV wall motion under pharmacological stress. Global LV function did not differ between groups, although the force-frequency response was preserved in pVEGF group and lost in placebo animals. These effects were associated with angio-arteriogenesis and proliferation of cardiomyocyte precursors. CONCLUSIONS: In sheep with AMI, pVEGF gene transfer affords long-term infarct size reduction, yielding regional LV function and perfusion improvement and reducing remodeling progression. These results suggest the potential usefulness of this approach in the clinical setting.


Subject(s)
Coronary Occlusion/therapy , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor A/genetics , Ventricular Function, Left , Animals , Coronary Occlusion/complications , Coronary Occlusion/physiopathology , Gene Transfer Techniques , Humans , Myocardial Infarction/etiology , Myocardial Infarction/physiopathology , Sheep
10.
Int J Clin Exp Med ; 4(4): 258-64, 2011.
Article in English | MEDLINE | ID: mdl-22140597

ABSTRACT

Ovine models of ischemic heart disease and cardiac failure are increasingly used in translational research. However, reliable extrapolation of the results to the clinical setting requires knowing if ovine normal left ventricular (LV) function is comparable to that of humans. We thus assessed for echocardiographic LV dimensions and indexes in a large normal adult sheep population and compared them with standardized values in normal human adults. Bidimensional and tissue Doppler echocardiograms were performed in 69 young adult Corriedale sheep under light sedation. LV dimensions and indexes of systolic and diastolic function were measured. Absolute and body surface areanormalized values were compared to those for normal adult humans and their statistical distribution was assessed. Normalized dimensions (except for end diastolic diameter) as well as ejection fraction and fractional shortening fell within the ranges established by the American Society of Echocardiography and European Association of Echocardiography for normal adult humans. Normalized end diastolic diameter exceeded the upper normal limit but got close to it when correcting for the higher heart mass/body surface area ratio of sheep with respect to humans. Diastolic parameters also fell within normal human ranges except for a slightly lower mitral deceleration time. All values exhibited a Gaussian distribution. We conclude that echocardiographic parameters of systolic and diastolic LV performance in young adult sheep can be reliably extrapolated to the adult human, thus supporting the use of ovine models of human heart disease in translational research.

11.
ILAR J ; 52(1): E16-21, 2011.
Article in English | MEDLINE | ID: mdl-21454923

ABSTRACT

Studies on cardiac regeneration require large mammalian models of dilated cardiomyopathy (DCM) after acute myocardial infarction (AMI), and pig and sheep models are increasingly used in this field of preclinical research. Given the large interindividual variability in ovine left anterior descending artery (LAD) anatomy, protocols based on the coronary arteries to be ligated often lead to significant variation in infarct sizes and hence to heterogeneous results, ranging from no ventricular remodeling to acute, lethal left ventricular (LV) failure. We designed an ovine model of postinfarction DCM based on estimated infarct size rather than on a predetermined menu of coronary artery ligatures. In seven adult sheep we induced an anterolateral AMI of approximately 25% of the LV mass by ligating the branches of the LAD that, by visual inspection, would lead to such an infarct size. In 10 to 12 weeks, LV end-diastolic volume more than doubled and LV end-systolic volume almost tripled. LV ejection fraction decreased dramatically, as did LV percent fractional shortening and LV percent wall thickening. Infarct size (planimetry) was approximately 25% of the LV endocardial surface. We conclude that in sheep, an anterolateral AMI of approximately 25% of the LV mass--regardless of the coronary branches ligated to attain that infarct size--results in a model of postinfarction DCM that may prove useful in preclinical research on myocardial regeneration.


Subject(s)
Cardiomyopathy, Dilated/physiopathology , Myocardial Infarction/physiopathology , Animals , Cardiomyopathy, Dilated/pathology , Coronary Vessel Anomalies/pathology , Coronary Vessel Anomalies/physiopathology , Coronary Vessels/pathology , Coronary Vessels/physiopathology , Myocardial Infarction/pathology , Sheep , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
12.
J Cardiovasc Pharmacol ; 55(3): 255-61, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20051878

ABSTRACT

The effects of growth hormone (GH) on infarct size and left ventricular (LV) function in experimental acute myocardial infarction (AMI) have been controversial. Moreover, little, if any, information exists regarding long-term evaluation of therapeutic doses of GH in large mammalian models of AMI. We therefore aimed to assess the effect of therapeutic doses of GH over 3.5 months on infarct size and heart function in sheep with AMI. After coronary artery ligation, sheep received subcutaneous human GH 8 IU/d (n = 8) or vehicle (n = 8) over 100 days. Infarct area was similar in GH (16.9% +/- 3% of LV area) and placebo (16.5% +/- 3.7%, P = not significant) sheep. At 3 days of treatment onset, but not at later times, GH sheep had higher LV shortening fraction (30.7% +/- 3.5% vs. 24.8% +/- 6.1%, P < 0.04), systolic anterior wall thickness (10.1 +/- 0.8 vs. 8.6 +/- 1.2 mm, P < 0.02), and cardiac index (3.8 +/- 0.6 vs. 2.8 +/- 0.7 L x min x m, P < 0.01). This evolution of function parameters paralleled that of serum insulin-like growth factor 1 levels, which differed significantly only during the first week, suggesting a direct effect of GH on LV contractility. These results may suggest the usefulness of therapeutic doses of GH at the early phases of AMI but do not support maintaining the treatment for longer time.


Subject(s)
Coronary Occlusion/complications , Human Growth Hormone/pharmacology , Myocardial Infarction/drug therapy , Ventricular Function, Left/drug effects , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Human Growth Hormone/administration & dosage , Injections, Subcutaneous , Insulin-Like Growth Factor I/metabolism , Male , Myocardial Infarction/physiopathology , Sheep , Time Factors
13.
J Cardiovasc Pharmacol ; 47(6): 736-41, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16810073

ABSTRACT

High-dose erythropoietin has been claimed to be cardioprotective in experimental acute myocardial infarction. In large mammals, however, results are controversial and long-term follow-up data are lacking. We thus assessed the long-term effects of high-dose erythropoietin on left ventricular infarct size and function in an ovine model of reperfused myocardial infarction. After 90 minutes of coronary occlusion followed by reperfusion, sheep received recombinant human erythropoietin (rhEPO) 3000 units/kg on 3 consecutive days (rhEPO group, n=7) or vehicle (placebo group, n=6). Ten weeks later, ventricular function was assessed by echocardiography and catheterization. Infarct size, evaluated as percent fibrotic myocardium (morphometry) and by hydroxyproline quantification, was similar in both groups (morphometry: rhEPO: 22.1 +/- 5.5%, placebo: 18.1 +/- 3.3%, P not significant; hydroxyproline: rhEPO: 6.6 +/- 1.3 microg/mg wet weight, placebo: 7.1 +/- 0.9 microg/mg, P not significant). Ventricular function was diminished in the rhEPO group, as indicated by lower septal wall thickening at the infarct border zone (rhEPO: -1.9 +/- 16.4%, placebo: 20.5 +/- 17%, P<0.04), higher end systolic volume (rhEPO: 47 +/- 14.3 mL, placebo: 32.6 +/- 7.3 mL, P<0.05), and higher end diastolic pressure (rhEPO: 17 +/- 6.5 mm Hg, placebo: 10.1 +/- 2.8 mm Hg, P<0.03). In the rhEPO group, left ventricular endocardial area was larger, suggesting dilatation. High-dose erythropoietin has no cardioprotective effects in sheep with reperfused myocardial infarction.


Subject(s)
Cardiotonic Agents/therapeutic use , Erythropoietin/therapeutic use , Myocardial Infarction/drug therapy , Ventricular Function, Left/drug effects , Animals , Blood Circulation/physiology , Blood Pressure , Cardiac Output , Erythropoietin/blood , Heart Rate , Heart Ventricles/pathology , Hematocrit , Male , Myocardial Infarction/pathology , Myocardial Reperfusion , Recombinant Proteins , Sheep , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...