Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 116(2): 110793, 2024 03.
Article in English | MEDLINE | ID: mdl-38220132

ABSTRACT

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Subject(s)
Leukocytes, Mononuclear , Single-Cell Analysis , Humans , Animals , Mice , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Algorithms , Gene Expression Profiling/methods
2.
Transl Oncol ; 15(1): 101301, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34890968

ABSTRACT

Multiple myeloma is a haematological malignancy that is dependent upon interactions within the bone microenvironment to drive tumour growth and osteolytic bone disease. Metformin is an anti-diabetic drug that has attracted attention due to its direct antitumor effects, including anti-myeloma properties. However, the impact of the bone microenvironment on the response to metformin in myeloma is unknown. We have employed in vitro and in vivo models to dissect out the direct effects of metformin in bone and the subsequent indirect myeloma response. We demonstrate how metformin treatment of preosteoblasts increases myeloma cell attachment. Metformin-treated preosteoblasts increased osteopontin (OPN) expression that upon silencing, reduced subsequent myeloma cell adherence. Proliferation markers were reduced in myeloma cells cocultured with metformin-treated preosteoblasts. In vivo, mice were treated with metformin for 4 weeks prior to inoculation of 5TGM1 myeloma cells. Metformin-pretreated mice had an increase in tumour burden, associated with an increase in osteolytic bone lesions and elevated OPN expression in the bone marrow. Collectively, we show that metformin increases OPN expression in preosteoblasts, increasing myeloma cell adherence. In vivo, this translates to an unexpected indirect pro-tumourigenic effect of metformin, highlighting the importance of the interdependence between myeloma cells and cells of the bone microenvironment.

3.
Nat Commun ; 10(1): 4533, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586071

ABSTRACT

Multiple myeloma is an incurable, bone marrow-dwelling malignancy that disrupts bone homeostasis causing skeletal damage and pain. Mechanisms underlying myeloma-induced bone destruction are poorly understood and current therapies do not restore lost bone mass. Using transcriptomic profiling of isolated bone lining cell subtypes from a murine myeloma model, we find that bone morphogenetic protein (BMP) signalling is upregulated in stromal progenitor cells. BMP signalling has not previously been reported to be dysregulated in myeloma bone disease. Inhibition of BMP signalling in vivo using either a small molecule BMP receptor antagonist or a solubilized BMPR1a-FC receptor ligand trap prevents trabecular and cortical bone volume loss caused by myeloma, without increasing tumour burden. BMP inhibition directly reduces osteoclastogenesis, increases osteoblasts and bone formation, and suppresses bone marrow sclerostin levels. In summary we describe a novel role for the BMP pathway in myeloma-induced bone disease that can be therapeutically targeted.


Subject(s)
Bone Diseases/drug therapy , Bone Morphogenetic Proteins/metabolism , Multiple Myeloma/complications , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Stem Cells/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone Density/drug effects , Bone Diseases/etiology , Bone Diseases/pathology , Bone Marrow/pathology , Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Bone Morphogenetic Protein Receptors/metabolism , Cell Line, Tumor , Disease Models, Animal , Femur/cytology , Femur/drug effects , Femur/pathology , Gene Expression Profiling , Gene Expression Regulation , Humans , Injections, Intraperitoneal , Mice , Mice, Inbred Strains , Multiple Myeloma/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , RNA-Seq , Signal Transduction/drug effects , Stem Cells/pathology , Tibia/cytology , Tibia/drug effects , Tibia/pathology , Treatment Outcome , Xenograft Model Antitumor Assays
4.
Sci Rep ; 9(1): 14189, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578352

ABSTRACT

Interactions between multiple myeloma (MM) and bone marrow (BM) are well documented to support tumour growth, yet the cellular mechanisms underlying pain in MM are poorly understood. We have used in vivo murine models of MM to show significant induction of nerve growth factor (NGF) by the tumour-bearing bone microenvironment, alongside other known pain-related characteristics such as spinal glial cell activation and reduced locomotion. NGF was not expressed by MM cells, yet bone stromal cells such as osteoblasts expressed and upregulated NGF when cultured with MM cells, or MM-related factors such as TNF-α. Adiponectin is a known MM-suppressive BM-derived factor, and we show that TNF-α-mediated NGF induction is suppressed by adiponectin-directed therapeutics such as AdipoRON and L-4F, as well as NF-κB signalling inhibitor BMS-345541. Our study reveals a further mechanism by which cellular interactions within the tumour-bone microenvironment contribute to disease, by promoting pain-related properties, and suggests a novel direction for analgesic development.


Subject(s)
Adiponectin/genetics , Multiple Myeloma/drug therapy , Nerve Growth Factor/genetics , Pain/drug therapy , Tumor Necrosis Factor-alpha/genetics , Adiponectin/antagonists & inhibitors , Animals , Bone Marrow/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Imidazoles/pharmacology , Mice , Multiple Myeloma/complications , Multiple Myeloma/genetics , Multiple Myeloma/pathology , NF-kappa B/antagonists & inhibitors , Neuroglia/metabolism , Neuroglia/pathology , Osteoblasts/drug effects , Pain/complications , Pain/genetics , Pain/pathology , Peptides/pharmacology , Piperidines/pharmacology , Quinoxalines/pharmacology , Stromal Cells/drug effects , Tumor Microenvironment/drug effects
5.
Sci Rep ; 9(1): 12343, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451798

ABSTRACT

Experimental biological model system outcomes such as altered animal movement capability or behaviour are difficult to quantify manually. Existing automatic movement tracking devices can be expensive and imposing upon the typical environment of the animal model. We have developed a novel multiplatform, free-to-use open-source application based on OpenCV, called AnimApp. Our results show that AnimApp can reliably and reproducibly track movement of small animals such as rodents or insects, and quantify parameters of action including distance and speed in order to detect activity changes arising from handling, environment enrichment, or temperature alteration. This system offers an accurate and reproducible experimental approach with potential for simple, fast and flexible analysis of movement and behaviour in a wide range of model systems.


Subject(s)
Algorithms , Video Recording , Animals , Drosophila/physiology , Larva/physiology , Mice, Inbred C57BL
6.
Methods Mol Biol ; 1914: 349-360, 2019.
Article in English | MEDLINE | ID: mdl-30729476

ABSTRACT

Multiple myeloma (MM) is a plasma cell neoplasm which is defined by strong interactions with the bone marrow microenvironment, a compartment with high cellular heterogeneity and unique structural and extracellular components. This necessitates the use of in vivo models for research to fully recapitulate MM growth conditions. The selection of appropriate model system is crucial, as each has advantages and shortcomings. Here, we describe the murine models available for studying MM, and focus on the methods for inoculating mice with MM cells via intravenous, intratibial or subcutaneous delivery, as well as monitoring of disease and organ processing for further analysis. The interaction and destruction of bone is a hallmark symptom of MM, and therefore many other complementary techniques used in calcified tissue research can be used, such as microCT, histomorphometry, and biomechanical testing.


Subject(s)
Bone Marrow/pathology , Disease Models, Animal , Multiple Myeloma/pathology , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line, Tumor/transplantation , Cell Separation/instrumentation , Cell Separation/methods , Flow Cytometry/instrumentation , Flow Cytometry/methods , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/diagnostic imaging , Spine/diagnostic imaging , Spine/pathology , Tumor Microenvironment , X-Ray Microtomography
7.
Cancer Res ; 74(6): 1625-31, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24599133

ABSTRACT

The bone marrow provides a specialized and highly supportive microenvironment for tumor growth and development of the associated bone disease. It is a preferred site for breast and prostate cancer bone metastasis and the hematologic malignancy, multiple myeloma. For many years, researchers have focused upon the interactions between tumor cells and the cells directly responsible for bone remodeling, namely osteoclasts and osteoblasts. However, there is ever-increasing evidence for a multitude of ways in which the bone marrow microenvironment can promote disease pathogenesis, including via cancer-associated fibroblasts, the hematopoietic stem cell niche, myeloid-derived suppressor cells, and the sympathetic nervous system. This review discusses the recent advances in our understanding of the contribution of the host microenvironment to the development of cancer-induced bone disease.


Subject(s)
Bone Diseases/pathology , Bone Marrow/pathology , Bone Neoplasms/secondary , Animals , Bone Diseases/etiology , Bone Marrow/innervation , Bone Remodeling , Humans , Neovascularization, Pathologic/pathology , Osteoblasts/physiology , Osteoclasts/physiology , Stem Cells/physiology , Tumor Microenvironment
8.
PLoS One ; 7(9): e44564, 2012.
Article in English | MEDLINE | ID: mdl-22970249

ABSTRACT

The transcriptional response to hypoxia is largely dependent on the Hypoxia Inducible Factors (HIF-1 and HIF-2) in mammalian cells. Many target genes have been characterised for these heterodimeric transcription factors, yet there is evidence that the full range of HIF-regulated genes has not yet been described. We constructed a TetON overexpression system in the rat pheochromocytoma PC-12 cell line to search for novel HIF and hypoxia responsive genes. The Rgs4 gene encodes the Regulator of G-Protein Signalling 4 (RGS4) protein, an inhibitor of signalling from G-protein coupled receptors, and dysregulation of Rgs4 is linked to disease states such as schizophrenia and cardiomyopathy. Rgs4 was found to be responsive to HIF-2α overexpression, hypoxic treatment, and hypoxia mimetic drugs in PC-12 cells. Similar responses were observed in human neuroblastoma cell lines SK-N-SH and SK-N-BE(2)C, but not in endothelial cells, where Rgs4 transcript is readily detected but does not respond to hypoxia. Furthermore, this regulation was found to be dependent on transcription, and occurs in a manner consistent with direct HIF transactivation of Rgs4 transcription. However, no HIF binding site was detectable within 32 kb of the human Rgs4 gene locus, leading to the possibility of regulation by long-distance genomic interactions. Further research into Rgs4 regulation by hypoxia and HIF may result in better understanding of disease states such as schizophrenia, and also shed light on the other roles of HIF yet to be discovered.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia/genetics , RGS Proteins/genetics , Animals , Base Sequence , DNA Primers , Dactinomycin/administration & dosage , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , PC12 Cells , Polymerase Chain Reaction , RNA, Small Interfering , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...