Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
AoB Plants ; 15(6): plad082, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094511

ABSTRACT

Oil bodies serve as a vital energy source of embryos during germination and contribute to sustaining the initial growth of seedlings until photosynthesis initiation. Despite high stability in chemical properties, how oil bodies break down and go into the degradation process during germination is still unknown. This study provides a morphological understanding of the mobilization of stored compounds in the seed germination of Cannabis. The achenes of fibrous hemp cultivar (Cannabis sativa cv. 'Chungsam') were examined in this study using light microscopy, scanning electron microscopy and transmission electron microscopy. Oil bodies in Cannabis seeds appeared spherical and sporadically distributed in the cotyledonary cells. Protein bodies contained electron-dense globoid and heterogeneous protein matrices. During seed germination, rough endoplasmic reticulum (rER) and high electron-dense substances were present adjacent to the oil bodies. The border of the oil bodies became a dense cluster region and appeared as a sinuous outline. Later, irregular hyaline areas were distributed throughout oil bodies, showing the destabilized emulsification of oil bodies. Finally, the oil bodies lost their morphology and fused with each other. The storage proteins were concentrated in the centre of the protein body as a dense homogenous circular mass surrounded by a light heterogeneous area. Some storage proteins are considered emulsifying agents on the surface region of oil bodies, enabling them to remain stable and distinct within and outside cotyledon cells. At the early germination stage, rER appeared and dense substances aggregated adjacent to the oil bodies. Certain proteins were synthesized within the rER and then translocated into the oil bodies by crossing the half membrane of oil bodies. Our data suggest that rER-associated proteins function as enzymes to lyse the emulsifying proteins, thereby weakening the emulsifying agent on the surface of the oil bodies. This process plays a key role in the degeneration of oil bodies and induces coalescence during seed germination.

2.
Appl Environ Microbiol ; 88(23): e0152822, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36374027

ABSTRACT

Epigenetic changes in genomics provide phenotypic modification without DNA sequence alteration. This study shows that benzoic acid, a common food additive and known histone deacetylase inhibitor (HDACi), has an epigenetic effect on Saccharomyces cerevisiae. Benzoic acid stimulated formation of epigenetic histone marks H3K4Me2, H3K27Me2, H3K18ac, and H3Ser10p in S. cerevisiae and altered their phenotypic behavior, resulting in increased production of phenylethyl alcohol and ester compounds during alcoholic fermentation using wine as a representative model system. Our study demonstrates the HDACi activity of certain dietary compounds such as sodium butyrate, curcumin and anacardic acid, suggests the potential use of these dietary compounds in altering S. cerevisiae phenotypes without altering host-cell DNA. This study highlights the potential to use common dietary compounds to exploit epigenetic modifications for various fermentation and biotechnology applications as an alternative to genetic modification. These findings indicate that benzoic acid and other food additives may have potential epigenetic effects on human gut microbiota, in which several yeast species are involved. IMPORTANCE The manuscript investigates and reports for the first time utilizing a non-GMO approach to alter the fermentation process of Pinot Noir wines. We have experimentally demonstrated that certain dietary compounds possess histone deacetylase (HDAC) inhibiting activity and can alter the wine characteristics by potentially altering yeast gene transcription, which was resulted from epigenetic effects. We have previously proposed the term "nutrifermentics" to represent this newly proposed field of research that provides insights on the effect of certain dietary compounds on microbial strains and their potential application in fermentation. This technological approach is a novel way to manipulate microorganisms for innovative food and beverage production with quality attributes catering for consumer's needs. Using a multidisciplinary approach with an emphasis on food fermentation and biotechnology, this study will be substantially useful and of broad interest to food microbiologists and biotechnologists who seek for innovative concepts with real-world application potential.


Subject(s)
Saccharomyces cerevisiae , Wine , Humans , Saccharomyces cerevisiae/genetics , Fermentation , Wine/analysis , Epigenesis, Genetic , Benzoic Acid
3.
J Vis Exp ; (183)2022 05 27.
Article in English | MEDLINE | ID: mdl-35695545

ABSTRACT

Industrial hemp (Cannabis spp.) has many compounds of interest with potential medical benefits. Of these compounds, cannabinoids have come to the center of attention, specifically acidic cannabinoids. The focus is turning toward acidic cannabinoids due to their lack of psychotropic activity. Cannabis plants produce acidic cannabinoids with hemp plants producing low levels of psychotropic cannabinoids. As such, utilization of hemp for acidic cannabinoid extraction would eliminate the need for decarboxylation prior to extraction as a source for the cannabinoids. The use of solvent-based extraction is ideal for obtaining acidic cannabinoids as their solubility in solvents such as supercritical CO2 is limited due to the high pressure and temperature required to reach their solubility constants. An alternative method designed to increase solubility is ultrasonic-assisted extraction. In this protocol, the impact of solvent polarity (acetonitrile 0.46, ethanol 0.65, methanol 0.76, and water 1.00) and concentration (20%, 50%, 70%, 90%, and 100%) on ultrasonic-assisted extraction efficiency has been examined. Results show that water was the least effective and acetonitrile was the most effective solvent examined. Ethanol was further examined since it has the lowest toxicity and is generally regarded as safe (GRAS). Surprisingly, 50% ethanol in water is the most effective ethanol concentration for extracting the highest amount of cannabinoids from hemp. The increase in cannabidiolic acid concentration was 28% when compared to 100% ethanol, and 23% when compared to 100% acetonitrile. While it was determined that 50% ethanol is the most effective concentration for our application, the method has also been demonstrated to be effective with alternative solvents. Consequently, the proposed method is deemed effective and rapid for extracting acidic cannabinoids.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Acetonitriles , Biomass , Ethanol , Plant Extracts , Solvents , Ultrasonics , Water
4.
Front Plant Sci ; 13: 793264, 2022.
Article in English | MEDLINE | ID: mdl-35154220

ABSTRACT

Cross-pollination of commercial crops has been an ongoing issue in many species. Cannabis spp. encompasses the classifications of marijuana [high in Δ9-tetrahydrocannabinol (THC)] and hemp (below 0.3% THC). As such, cannabis is the most recent crop facing the dilemma of cross-pollination and is leading to litigation. These litigations are driven by the large misunderstanding of the impacts of cross-pollination within the cannabis industry. The misconception is that if hemp is cross-pollinated by high THC cannabis, the hemp will become "hot" (high in THC) thereby rendering the crop illegal under the 2018 Farm Bill. However, there are many factors that contribute to the amount of THC a plant may produce. This article examines and refutes the misconception of cross-pollination increasing THC levels by highlighting several methods of how THC may become high in a given hemp crop.

5.
J Cannabis Res ; 3(1): 40, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34465400

ABSTRACT

BACKGROUND: Cannabinoids are increasingly becoming compounds of medical interest. However, cannabis plants only produce carboxylated cannabinoids. In order to access the purported medical benefits of these compounds, the carboxylic acid moiety must be removed. This process is typically performed by heating the plant material or extract; however, cannabinoids being thermolabile can readily degrade, evaporate, or convert to undesired metabolites. Pressurized liquid extraction (PLE) operates using a pseudo-closed system under pressure and temperature. While pressure is maintained at 11 MPa, temperature can be varied from ambient to 200 °C. METHODS: Temperatures were evaluated (80 to 160 °C) using PLE for the thermo-chemical conversion of cannabinoid acids utilizing water as the solvent in the first step of extraction with subsequent extraction with ethanol. Optimum temperatures were established for the conversion of 6 cannabinoid acids to their neutral cannabinoid forms. Cannabinoid acid conversion was monitored by HPLC. RESULTS: The use of PLE for thermo-chemical decarboxylation has resulted in a rapid decarboxylation process taking merely 6 min. The temperatures established here demonstrate statistically significant maxima and minima of cannabinoids and their parent cannabinoid acids. One-way ANOVA analysis shows where individual cannabinoids are statistically different, but the combination of the maxima and minima provides temperatures for optimum thermo-chemical conversion. CBC, CBD, CBDV, and CBG have an optimum temperature of conversion of 140 °C, while THC was 120 °C for 6 min. DISCUSSION: Decarboxylation of cannabinoid acids is necessary for conversion to the bioactive neutral form. The pseudo-closed chamber of the PLE makes this an ideal system to rapidly decarboxylate the cannabinoid acids due to pressure and temperature, while minimizing loss typically associated with conventional thermal-decarboxylation. This study established the optimum temperatures for thermo-chemical conversion of the cannabinoid acids in water and provides the groundwork for further development of the technology for industrial scale application.

6.
J Anim Sci ; 99(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-33674864

ABSTRACT

Energy supplementation may reduce oxidative stress by correcting a negative energy balance, but in some contexts, it has been shown to increase oxidative stress, especially at peak lactation. The current experiment examined if a pelleted energy supplement with or without the addition of Lactobacillus-fermented seaweed or seaweed plus terrestrial plants extracts affected oxidative stress of ewes from late gestation through to weaning and ewe and lamb production from lambing to weaning. Treatments were either no supplement (CON-), a pelleted supplement only (CON+, 100 g/ewe per d), CON+ with seaweed extract only (SWO, 10 mL/ewe per day), or CON+ with seaweed plus an arrangement of terrestrial plant extract (SWP, 10 mL/ewe per d). Ewes (n = 160; mean initial BW = 72.3 ± 9.5 kg [mean ± SD]) were randomized to pastures (n = 4 pastures per treatment with 10 ewes each). After lambing, ewes with twins were reallocated to pastures (n = 3 pastures per treatment with 10 ewes each) according to lambing date. At 4 wk in milk, supplementation tended to reduce total antioxidant status (TAS; P = 0.10) and increased glutathione peroxidase (GPx) activity compared with nonsupplemented ewes (P = 0.04). The addition of seaweed and terrestrial plants extracts to the concentrate, that is, SWO and SWP, increased TAS and reduced GPx activity compared with CON+ (P < 0.01). Supplementation increased milk yield at weeks 4, 6, and 8 of lactation, and protein, lactose, and total milk solids yield at peak lactation (week 4; P < 0.05). The CON- ewes had greater somatic cell count than the supplemented ewes at weeks 4, 8, and 10 of lactation (P = 0.03). Our results suggest that energy supplementation, alone, increases oxidative stress of lactating ewes, which may relate to increased oxidative phosphorylation. Most importantly, these results indicate that in situations where energy supplementation is needed to increase animal performance, negative effects of energy supplementation around peak lactation can be offset by the addition of Lactobacillus-fermented plant extracts (SWO and SWP) to improve antioxidant status.


Subject(s)
Animal Feed , Lactation , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Female , Lactobacillus , Milk , Plant Extracts/pharmacology , Pregnancy , Sheep
7.
Food Chem ; 344: 128715, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33277129

ABSTRACT

A novel innovative viscoelastic gelling agent (novel gel, NG) has been developed by combining citric acid (CA) and disodium 5-guanylate (DG). NG has the potential to replace other gelling agents such as gelatine, which has been commonly used in foods, dietary supplements, pharmaceutical and cosmetic products including ointments and sprays. NG has unique physico-chemical properties, including a wide range of concentration-dependent, temperature-sensitive gel strengths. Based on the rheological measurement results, NG depicted similar shear thinning behaviour to gelatine, within shear rates ranging from 25.8 to 129 (s-1). NG also significantly increased the shelf-life (by 21 days) of minced beef, as well as inhibited the growth of major spoilage pathogens, such as E. coli, S. aureus, Salmonella sp., Listeria sp., yeast and moulds, making it an ideal candidate for gelatine replacement.


Subject(s)
Anti-Bacterial Agents/chemistry , Chemical Phenomena , Elasticity , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Citric Acid/chemistry , Food Microbiology , Food Storage , Gelatin/chemistry , Gels , Guanosine Monophosphate/chemistry , Red Meat/microbiology , Rheology , Temperature , Viscosity
8.
Food Chem ; 343: 128474, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33172754

ABSTRACT

Viticultural practices to control the undervine environment have relied on chemical herbicides. Herbicides usage has resulted in resistance by weeds, alterations in soil environments, as well as not meeting the needs of the organic market. Consequently, black and white weedmat was utilized to manage the undervine area over multiple vintages and its influence on the resultant wines examined. Apart from a difference in juice soluble solids, there was no impact on grape yield. In the 2017 vintage, black weedmat wines had the largest variation in aromatic profile when compared to control; additionally white weedmat was more closely related to the control. These differences had disappeared in the 2018 vintage with all wines having similar aromatic profile concentrations. Trained sensory panel could not discriminate treatment effects on wine flavor and aroma for either vintage. Ultimately, these findings support the use of weedmats in the viticulture setting to eliminate herbicide usage.


Subject(s)
Herbicides , Vitis/growth & development , Volatile Organic Compounds/analysis , Weed Control/methods , Wine , Adult , Humans , Middle Aged , New Zealand , Odorants/analysis , Taste , Vitis/chemistry , Wine/analysis
9.
Antioxidants (Basel) ; 9(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664392

ABSTRACT

The gastrointestinal (GI) tract is crucial for food digestion and nutrient absorption in humans. However, the GI tract is usually challenged with oxidative stress that can be induced by various factors, such as exogenous pathogenic microorganisms and dietary alterations. As a part of gut microbiota, Lactobacillus spp. play an important role in modulating oxidative stress in cells and tissues, especially in the GI tract. Oxidative stress is linked with excessive reactive oxygen species (ROS) that can be formed by a few enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). The redox mechanisms of Lactobacillus spp. may contribute to the downregulation of these ROS-forming enzymes. In addition, nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2) and nuclear factor kappa B (NF-κB) are two common transcription factors, through which Lactobacillus spp. modulate oxidative stress as well. As oxidative stress is closely associated with inflammation and certain diseases, Lactobacillus spp. could potentially be applied for early treatment and amelioration of these diseases, either individually or together with prebiotics. However, further research is required for revealing their mechanisms of action as well as their extensive application in the future.

10.
Antioxidants (Basel) ; 8(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330796

ABSTRACT

Valorization of agricultural waste has become increasingly important. Wastes generated by wineries are high in phenolic compounds with antioxidant and antibacterial properties, which contribute to phytotoxicity, making their immediate use for agricultural means limited. Utilizing a water-based extraction method, the phenolic compounds from winery waste were extracted and purified. The resulting extract was characterized for phenolic composition using high-pressure liquid chromatography-ultraviolet/visible and electrochemical detectors (HPLC-UV/Vis, ECD) for monomers, and spectral assessment of the tannins present using attenuated total reflectance- Fourier transform infrared (ATR-FTIR), FT-Raman, and solid-state nuclear magnetic resonance (SSNMR) spectroscopies. The extract's antioxidant activity was assessed by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and Folin-Ciocalteu total phenolic assay, and was found to be as effective as a commercially obtained grape extract. The extract's antimicrobial efficacy was tested for minimum bactericidal concentration using Candida albicans, Escherichia coli 25922, and Staphylococcus aureus 6538, which resulted in greater efficacy against gram-positive bacteria as shown over gram-negative bacteria, which can be linked to both monomeric and tannin polyphenols, which have multiple modes of bactericidal action.

11.
Article in English | MEDLINE | ID: mdl-27696959

ABSTRACT

Although commercial tannins are widely used in foods and beverages, an improved understanding of the structure and composition of vegetable tannins is needed to promote the exploitation of agri-food by-products and waste and their valorisation in more sustainable industrial applications. This study aims to characterise the phytochemical composition and antioxidant activity of 13 food grade tannins using multiple analytical approaches, including spectrophotometry and HPLC-ECD to determine the amount of targeted polyphenolic compounds. Moreover, the antioxidant activity of tannins was assessed in terms of radical scavenging activity (DPPH• assay), reducing power (FRAP assay), and redox properties (cyclic voltammetry, CV). A statistical univariate and multivariate correlation analysis was performed on 17 parameters including tannin content (range: 0.71-1.62 mM), gallic acid, (+)-catechin, syringic acid and (‒)-epicatechin. The compositional profile of tannins was related to their chemical moiety, antioxidant activity and the botanical origin of the extracts. In particular, the CV signal at 500 mV was highly correlated with DPPH• value due to the catechol ring of flavonoids and trigalloyl moieties of gallic acid-based compounds. Practical examples of tannins application in winemaking are discussed.


Subject(s)
Antioxidants/analysis , Food Analysis , Models, Chemical , Tannins/analysis , Wine/analysis
12.
J Sci Food Agric ; 96(8): 2825-31, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26337572

ABSTRACT

BACKGROUND: A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. RESULTS: Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. CONCLUSION: Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Polyenes/chemistry , Tannins/chemistry , Vitis/chemistry , Hot Temperature , Membranes, Artificial
13.
Appl Spectrosc ; 69(11): 1243-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26647047

ABSTRACT

Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.


Subject(s)
Spectroscopy, Fourier Transform Infrared/methods , Tannins/analysis , Tannins/chemistry , Algorithms , Principal Component Analysis , Tannins/classification
14.
Food Chem ; 183: 181-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25863627

ABSTRACT

Sauvignon blanc wines are characterised by their varietal aromas and low phenolic content. Mechanical harvesting has been shown to increase several varietal aromas. Likewise, maceration techniques have produced increases in phenolic content and antioxidant activity, but these can also alter tactile attributes and sensory profiles. Mechanical harvesting and cryogenic maceration were used in combination to produce a Sauvignon blanc wine with increased phenolic content and antioxidant activity, while showing a similar sensory profile to control wines. Phenolic profiles of the wines showed differences between the harvesting and maceration techniques. Mechanical harvesting contributed to decreases in phenolics through reaction with oxidative radicals. Cryogenic maceration increased phenolics and antioxidant activity. Cryogenic maceration also increased the levels of several varietal aromas, for Sauvignon blanc wines made from both hand-picked and from machine-harvested fruit. Furthermore, cryogenic treatment of hand-picked fruit increased varietal thiols to levels similar to machine-harvested control wines.


Subject(s)
Fruit/chemistry , Phenols/analysis , Wine/analysis , Antioxidants , Food Handling/methods , Odorants , Polyphenols
15.
J Pharmacol Exp Ther ; 310(3): 1266-72, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15152026

ABSTRACT

The serotonin (5-hydroxytryptamine1A) 5-HT1A receptor agonist 8-OH-DPAT [(R)- (+)-8-hydroxy-2-(di-n-propylamino)tetralin] inhibits bladder activity under nociceptive but not innocuous conditions in cats with an intact spinal cord, suggestive of an effect on primary afferent C fibers or their targets. Because C fibers play a key role in reflex micturition in chronic spinal cord injury (SCI), we investigated the effect of 8-OH-DPAT on micturition in SCI cats. We also investigated GR-46611 (3-[3-(2-dimethylaminoethyl)-1H-indol-5-yl]-N-(4-methoxybenzyl)acrylamide), which has agonist activity predominantly at 5-HT1B and 5-HT1D receptors but also at the 5-HT1A receptor. Chloralose-anesthetized cats were catheterized through the bladder dome for saline-filling cystometry. Dose-response curves for i.v. 8-OH-DPAT (0.3-30 microg/kg) and GR-46611 (0.03-300 microg/kg) were followed in three cases each by 5-HT1A antagonist WAY-100635 [N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide] at 300 microg/kg. Threshold volume, capacity, residual volume, micturition volume, and arterial pressure were measured. Intact cats showed few significant changes in cystometric variables. SCI cats responded to both 8-OH-DPAT and GR-46611 with dose-dependent increases in threshold volume, capacity, and residual volume, significant at > or =10 microg/kg for 8-OH-DPAT and at > or =3 microg/kg for GR-46611. Effects of 8-OH-DPAT but not GR-46611 were largely reversed by WAY-100635. Both 5-HT1A and 5-HT1B/1D agonists may offer a promising means of reducing bladder hyperactivity and increasing bladder capacity in patients with chronic SCI.


Subject(s)
8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Serotonin Receptor Agonists/pharmacology , Spinal Cord Injuries/physiopathology , Urinary Bladder/drug effects , Acrylamides/pharmacology , Animals , Blood Pressure/drug effects , Carotid Arteries/drug effects , Carotid Arteries/physiopathology , Cats , Chronic Disease , Female , Indoles/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Serotonin Antagonists/pharmacology , Urinary Bladder/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...