Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(43): 13366-13371, 2017 10 16.
Article in English | MEDLINE | ID: mdl-28771911

ABSTRACT

We report the most siliceous FAU-type zeolite, HOU-3, prepared via a one-step organic-free synthesis route. Computational studies indicate that it is thermodynamically feasible to synthesize FAU with SAR=2-7, though kinetic factors seemingly impose a more restricted upper limit for HOU-3 (SAR≈3). Our findings suggest that a slow rate of crystallization and/or low concentration of Na+ ions in HOU-3 growth mixtures facilitate Si incorporation into the framework. Interestingly, Q4 (nAl) Si speciation measured by solid-state NMR can only be modeled with a few combinations of Al positioning at tetrahedral sites in the crystal unit cell, indicating the distribution of Si(-O-Si)4-n (-O-Al)n species is spatially biased as opposed to being random. Achieving higher SAR is desirable for improved zeolite (hydro)thermal stability and enhanced catalytic performance, which we demonstrate in benchmark tests that show HOU-3 is superior to commercial zeolite Y.

2.
Chemistry ; 22(45): 16078-16088, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27588557

ABSTRACT

Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2 O relative to other light gases (e.g., H2 , N2 , CO2 ). Our findings refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS-type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis.

3.
Chem Commun (Camb) ; 51(2): 269-72, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25347029

ABSTRACT

Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

4.
J Am Chem Soc ; 135(7): 2641-52, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23265176

ABSTRACT

Controlling polymorphism is critical in areas such as pharmaceuticals, biomineralization, and catalysis. Notably, the formation of unwanted polymorphs is a ubiquitous problem in zeolite synthesis. In this study, we propose a new platform for controlling polymorphism in organic-free Na-zeolite synthesis that enables crystal composition and properties to be tailored without sacrificing crystal phase purity. Through systematic adjustment of multiple synthesis parameters, we identified ternary (kinetic) phase diagrams at specific compositions (i.e., Si, Al, and NaOH mole fractions) using colloidal silica and sodium aluminate. Our studies identify multiple stages of zeolite phase transformations involving the framework types FAU, LTA, EMT, GIS, SOD, ANA, CAN, and JBW. We report an initial amorphous-to-crystalline transition of core-shell particles (silica core and alumina shell) to low-density framework types and their subsequent transformation to more dense structures with increasing temperature and/or time. We show that reduced water content facilitates the formation of structures such as EMT that are challenging to synthesize in organic-free media and reduces the synthesis temperature required to achieve higher-density framework types. A hypothesis is proposed for the sequence of phase transformations that is consistent with the Ostwald rule of stages, wherein metastable structures dissolve and recrystallize into more thermodynamically stable structures. The ternary diagrams developed here are a broadly applicable platform for rational design that offers an alternative to time- and cost-intensive methods of ad hoc parameter selection without a priori knowledge of crystal phase behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...