Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JIMD Rep ; 20: 103-11, 2015.
Article in English | MEDLINE | ID: mdl-25665836

ABSTRACT

BACKGROUND: Primary carnitine deficiency (PCD) is a disorder of fatty acid oxidation with a high prevalence in the Faroe Islands. Only patients homozygous for the c.95A>G (p.N32S) mutation have displayed severe symptoms in the Faroese patient cohort. In this study, we investigated carnitine levels in skeletal muscle, plasma, and urine as well as renal elimination kinetics before and after intermission with L-carnitine in patients homozygous for c.95A>G. METHODS: Five male patients homozygous for c.95A>G were included. Regular L-carnitine supplementation was stopped and the patients were observed during five days. Blood and urine were collected throughout the study. Skeletal muscle biopsies were obtained at 0, 48, and 96 h. RESULTS: Mean skeletal muscle free carnitine before discontinuation of L-carnitine was low, 158 nmol/g (SD 47.4) or 5.4% of normal. Mean free carnitine in plasma (fC0) dropped from 38.7 (SD 20.4) to 6.3 (SD 1.7) µmol/L within 96 h (p < 0.05). Mean T 1/2 following oral supplementation was approximately 9 h. Renal reabsorption of filtered carnitine following oral supplementation was 23%. The level of mean free carnitine excreted in urine correlated (R (2) = 0.78, p < 0.01) with fC0 in plasma. CONCLUSION: Patients homozygous for the c.95A>G mutation demonstrated limited skeletal muscle carnitine stores despite long-term high-dosage L-carnitine supplementation. Exacerbated renal excretion resulted in a short T 1/2 in plasma carnitine following the last oral dose of L-carnitine. Thus a treatment strategy of minimum three daily separate doses of L-carnitine is recommended, while intermission with L-carnitine treatment might prove detrimental.

2.
J Clin Endocrinol Metab ; 98(4): 1667-75, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23426616

ABSTRACT

BACKGROUND: It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified. DESIGN: We investigated (1) fuel utilization during prolonged low-intensity exercise in patients with MCADD and (2) the influence of 4 weeks of oral l-carnitine supplementation on fuel utilization during exercise. METHODS: Four asymptomatic patients with MCADD and 11 untrained, healthy, age- and sex-matched control subjects were included. The subjects performed a 1-hour cycling test at a constant workload corresponding to 55% of Vo2max, while fat and carbohydrate metabolism was assessed, using the stable isotope technique and indirect calorimetry. The patients ingested 100 mg/kg/d of l-carnitine for 4 weeks, after which the cycling tests were repeated. RESULTS: At rest, palmitate oxidation and total fatty acid oxidation (FAO) rates were similar in patients and healthy control subjects. During constant workload cycling, palmitate oxidation and FAO rates increased in both groups, but increased 2 times as much in healthy control subjects as in patients (P = .007). Palmitate oxidation and FAO rates were unchanged by the l-carnitine supplementation. CONCLUSION: Our results indicate that patients with MCADD have an impaired ability to increase FAO during exercise but less so than that observed in patients with a number of other disorders of fat oxidation, which explains the milder skeletal muscle phenotype in MCADD. The use of carnitine supplementation in MCADD cannot be supported by the present findings.


Subject(s)
Carnitine/pharmacology , Exercise/physiology , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism/physiology , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/metabolism , Adolescent , Adult , Carnitine/administration & dosage , Dietary Supplements , Exercise Test , Exercise Tolerance/drug effects , Exercise Tolerance/physiology , Female , Humans , Lipid Metabolism/drug effects , Male , Oxidation-Reduction/drug effects , Research Design , Young Adult
3.
Gen Comp Endocrinol ; 163(3): 270-7, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19401202

ABSTRACT

We recently showed that a series of tight junction proteins of the claudin family are regulated in the gill of salmon during salinity acclimation. The aim of the present study was to investigate the role of cortisol, growth hormone (GH) and prolactin (PRL) on regulation of expression of these isoforms. Experiments on primary cultures of gill tissue showed that cortisol stimulates claudin 10e, 27a and 30 mRNA levels while no significant effects were observed on claudin 28a and 28b. The associated receptor signalling pathway was examined using glucocorticoid and mineralocorticoid receptor antagonists RU486 and spironolactone, respectively. The observed in vitro responses were blocked by RU486, suggesting the involvement of a glucocorticoid type receptor. Injections of FW salmon with cortisol increased the expression of claudin 10e, 27a, and 30 but did not affect claudin 28a and 28b significantly. While GH had no effect on its own, the combination of GH and cortisol reduced claudin 28b levels. Injection of SW salmon with PRL selectively increased the expression of claudin 28a but had no effect on the other examined isoforms. The data shows that FW- (27a and 30) and SW-induced (10e) claudins are all stimulated by cortisol while the major osmoregulatory hormones GH and PRL had no effect on these salinity sensitive isoforms. This suggests that other hormones and/or osmotic conditions interact with cortisol to determine claudin composition in the gill.


Subject(s)
Gene Expression Regulation/drug effects , Gills/drug effects , Gills/metabolism , Growth Hormone/pharmacology , Hydrocortisone/pharmacology , Membrane Proteins/metabolism , Prolactin/pharmacology , Salmo salar/metabolism , Animals , Hormone Antagonists/pharmacology , Membrane Proteins/genetics , Mifepristone/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Polymerase Chain Reaction , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/physiology , Receptors, Mineralocorticoid/physiology , Spironolactone/pharmacology , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...