Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Neurosci ; 129: 103931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508542

ABSTRACT

Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1ß, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.


Subject(s)
Brain , Inflammation , Lipopolysaccharides , alpha-Synuclein , alpha-Synuclein/metabolism , Animals , Mice , Inflammation/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Male , Humans , Blood Coagulation/drug effects , Synucleinopathies/metabolism , Synucleinopathies/pathology , Cytokines/metabolism , Disease Models, Animal
2.
J Imaging ; 8(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36547494

ABSTRACT

The margin of the removed tumor in cancer surgery has an important influence on survival. Adjuvant treatments, prognostic complications, and financial costs are required when the pathologist observes a close/positive surgical margin. Ex vivo imaging of resected cancer tissue has been suggested for margin assessment, but traditional cross-sectional imaging is not optimal in a surgical setting. Instead, three-dimensional (3D) ultrasound is a portable, high-resolution, and low-cost method to use in the operation room. In this study, we aimed to investigate the accuracy of 3D ultrasound versus computed tomography (CT) to measure the tumor volume in an animal model compared to gross pathology assessment. The specimen was formalin fixated before systematic slicing. A slice-by-slice area measurement was performed to compare the accuracy of the 3D ultrasound and CT techniques. The tumor volume measured by pathological assessment was 980.2 mm3. The measured volume using CT was 890.4 ± 90 mm3, and the volume using 3D ultrasound was 924.2 ± 96 mm3. The correlation coefficient for CT was 0.91 and that for 3D ultrasound was 0.96. Three-dimensional ultrasound is a feasible and accurate modality to measure the tumor volume in an animal model. The accuracy of tumor delineation on CT depends on the soft tissue contrast.

4.
Acta Neuropsychiatr ; 30(4): 192-202, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29559016

ABSTRACT

OBJECTIVE: Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. RESULTS: A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. CONCLUSION: Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.


Subject(s)
Hippocampus/metabolism , Neuronal Plasticity/physiology , Piriform Cortex/metabolism , Receptors, Somatostatin/metabolism , Somatostatin/metabolism , Animals , Electric Stimulation , Male , Mice , Seizures/metabolism
5.
J Vis Exp ; (125)2017 07 09.
Article in English | MEDLINE | ID: mdl-28715378

ABSTRACT

Stereological methods are designed to describe quantitative parameters without making assumptions about size, shape, orientation and distribution of cells or structures. These methods have been revolutionary for quantitative analysis of the mammalian brain, in which volumetric cell populations are too high to count manually, and stereology is now the technique of choice whenever estimates of three-dimensional quantities need to be extracted from measurements on two-dimensional sections. All stereological methods are in principle unbiased; however, they rely on proper knowledge about the structure of interest and the characteristics of the tissue. Stereology is based on Systematic Uniformly Random Sampling (SURS), with adjustment of sampling to the most efficient level in respect to precision, providing reliable, quantitative information about the whole structure of interest. Here we present the optical fractionator in conjunction with BrdU immunohistochemistry to estimate the production and survival of newly-formed neurons in the granule cell layer (including the sub-granular zone) of the rat hippocampus following electroconvulsive stimulation, which is among the most potent stimulators of neurogenesis. The optical fractionator technique is designed to provide estimates of the total number of cells from thick sections sampled from the full structure. Thick sections provide the opportunity to observe cells in their full 3-D extent and thus, allow for easy and robust cell classification based on morphological criteria. When correctly implemented, the sensitivity and efficiency of the optical fractionator provides accurate estimates with a fixed and predetermined precision.


Subject(s)
Cell Count/methods , Electroconvulsive Therapy/methods , Immunohistochemistry/methods , Animals , Disease Models, Animal , Male , Rats
6.
Behav Brain Res ; 326: 1-12, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28263831

ABSTRACT

The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT2AR activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT2AR blockade does not seem to affect the amygdala-striatal projection.


Subject(s)
Basolateral Nuclear Complex/physiology , Behavior, Animal/physiology , Motor Activity/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Receptor, Serotonin, 5-HT2A/physiology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Behavior, Animal/drug effects , Female , Ketanserin/administration & dosage , Ketanserin/pharmacology , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Antagonists/administration & dosage
7.
Hippocampus ; 27(1): 52-60, 2017 01.
Article in English | MEDLINE | ID: mdl-27756104

ABSTRACT

Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design-based stereological cell counting, we recently documented an initial 2.6-fold increase in neurogenesis following a clinical relevant schedule of ECS, a treatment also rescuing depression-like behavior in rats. However, these results gave no demonstration of the longevity of newly generated neurons. The present study is a direct continuation of the previous work aiming to test the hypothesis that rats subjected to ECS in combination with chronic restraint stress (CRS) display increased formation of new hippocampal neurons, which have a potential for long-term survival. Furthermore, using mediation analysis, we tested if an ECS-induced increase in neurogenesis facilitates the behavioral outcome of the forced swim test (FST), an animal model of depression. The results showed that ECS in conjunction with CRS stimulates hippocampal neurogenesis, and that a significant quantity of the newly formed hippocampal neurons survives up to 12 months. The new BrdU-positive neurons showed time-dependent attrition of ∼40% from day 1 to 3 months, with no further decline between 3 and 12 months. ECS did not affect the number of pre-existing dentate granule neurons or the volume of the dentate granule cell layer, suggesting no damaging effect of the treatment. Finally, we found that, while ECS increases neurogenesis, this formation of new neurons was not associated to ameliorated immobility in the FST. This implies that other ECS-induced effects than neurogenesis must be part of mediating the antidepressant action of ECS. Taken together, the results of the present study contribute to the basic understanding of the neurogenic effects of ECT, and demonstrate that ECS, neurogenesis and anti-depressant behavior are not directly linked. © 2016 Wiley Periodicals, Inc.


Subject(s)
Depressive Disorder/physiopathology , Depressive Disorder/therapy , Electroconvulsive Therapy , Hippocampus/physiopathology , Neurogenesis/physiology , Neurons/physiology , Animals , Bromodeoxyuridine , Cell Count , Cell Survival/physiology , Depressive Disorder/pathology , Disease Models, Animal , Follow-Up Studies , Hippocampus/pathology , Male , Neurons/pathology , Random Allocation , Rats, Wistar , Restraint, Physical , Time Factors
8.
Parkinsons Dis ; 2016: 3682936, 2016.
Article in English | MEDLINE | ID: mdl-27579212

ABSTRACT

The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

SELECTION OF CITATIONS
SEARCH DETAIL
...