Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Travel Med Infect Dis ; 59: 102714, 2024.
Article in English | MEDLINE | ID: mdl-38490400

ABSTRACT

BACKGROUND: Tick- and louse-borne relapsing fever are highly-neglected, vector-borne diseases caused by diverse Borrelia species. Presently, there are no data available on the endemicity of tick- and louse-borne relapsing fever spirochetes in Kenya. Here, we present data of a retrospective study on the seroprevalence of louse-borne relapsing fever (LBRF) in northern Kenya. METHODS: A novel immunoassay, recently established for the diagnosis of LBRF was utilized to screen 2005 blood samples collected from individuals with fever without a source in Turkana County, Kenya between May 2009 and November 2010 for anti-LBRF antibodies. RESULTS: Out of the 2005 sera analyzed, 287 samples (14.3 %) were considered anti-LBRF IgG positive. Subsequent analyses revealed that 87 out of 152 sera randomly selected from these 2005 samples were tested positive (57.2 %) for anti-LBRF IgM antibodies. Most of the IgG and IgM positive samples were from individuals living in northern regions of Turkana County. CONCLUSION: Our serological finding provides strong evidence for the occurrence of LBRF in Kenya.


Subject(s)
Antibodies, Bacterial , Borrelia , Immunoglobulin G , Immunoglobulin M , Relapsing Fever , Kenya/epidemiology , Relapsing Fever/epidemiology , Relapsing Fever/diagnosis , Relapsing Fever/microbiology , Relapsing Fever/blood , Humans , Seroepidemiologic Studies , Retrospective Studies , Male , Female , Antibodies, Bacterial/blood , Immunoglobulin G/blood , Borrelia/immunology , Immunoglobulin M/blood , Adult , Animals , Adolescent , Middle Aged , Young Adult , Child , Child, Preschool
2.
G3 (Bethesda) ; 10(7): 2179-2183, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32385046

ABSTRACT

Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university master's course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behavior. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published Hi-C data. The use of ∼35x nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using the Hi-C data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 96.1% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly. We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university master's course. The use of ∼35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


Subject(s)
Nanopores , Universities , Animals , Chromosomes/genetics , Fishes/genetics , Genomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...