Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1254097, 2023.
Article in English | MEDLINE | ID: mdl-37781260

ABSTRACT

Introduction: The vagus nerve, the primary neural pathway mediating brain-body interactions, plays an essential role in transmitting bodily signals to the brain. Despite its significance, our understanding of the detailed organization and functionality of vagal afferent projections remains incomplete. Methods: In this study, we utilized manganese-enhanced magnetic resonance imaging (MEMRI) as a non-invasive and in vivo method for tracing vagal nerve projections to the brainstem and assessing their functional dependence on cervical vagus nerve stimulation (VNS). Manganese chloride solution was injected into the nodose ganglion of rats, and T1-weighted MRI scans were performed at both 12 and 24 h after the injection. Results: Our findings reveal that vagal afferent neurons can uptake and transport manganese ions, serving as a surrogate for calcium ions, to the nucleus tractus solitarius (NTS) in the brainstem. In the absence of VNS, we observed significant contrast enhancements of around 19-24% in the NTS ipsilateral to the injection side. Application of VNS for 4 h further promoted nerve activity, leading to greater contrast enhancements of 40-43% in the NTS. Discussion: These results demonstrate the potential of MEMRI for high-resolution, activity-dependent tracing of vagal afferents, providing a valuable tool for the structural and functional assessment of the vagus nerve and its influence on brain activity.

2.
J Speech Lang Hear Res ; 63(1): 135-142, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31922926

ABSTRACT

Objective Consuming less water (systemic dehydration) has long been thought to dehydrate the vocal folds. An in vivo, repeated measures study tested the assumption that systemic dehydration causes vocal fold dehydration. Proton density (PD)-weighted magnetic resonance imaging (MRI) of rat vocal folds was employed to investigate (a) whether varying magnitudes of systemic dehydration would dehydrate the vocal folds and (b) whether systemic rehydration would rehydrate the vocal folds. Method Male (n = 25) and female (n = 14) Sprague Dawley rats were imaged with 7T MRI, and normalized PD-weighted signal intensities were obtained at predehydration, following dehydration, and following rehydration. Animals were dehydrated to 1 of 3 levels by water withholding to induce body weight loss: mild (< 6% body weight loss), moderate (6%-10% body weight loss), and marked (> 10% body weight loss). Results There was a significant decrease in vocal fold signal intensities after moderate and marked dehydration (p < .0167). Rehydration increased the normalized signal intensity to predehydration levels for only the moderate group (p < .0167). Normalized signal intensity did not significantly change after mild dehydration or when the mildly dehydrated animals were rehydrated. Additionally, there were no significant differences in PD-weighted MRI normalized signal intensity between male and female rats (p > .05). Conclusion This study provides evidence supporting clinical voice recommendations for rehydration by increasing water intake after an acute, moderate systemic dehydration event. However, acute systemic dehydration of mild levels did not dehydrate the vocal folds as observed by PD-weighted MRI. Future programmatic research will focus on chronic, recurring systemic dehydration.


Subject(s)
Dehydration/diagnostic imaging , Fluid Therapy/methods , Magnetic Resonance Imaging/methods , Vocal Cords/diagnostic imaging , Animals , Dehydration/pathology , Disease Models, Animal , Female , Male , Rats , Rats, Sprague-Dawley , Vocal Cords/pathology
3.
Neuroimage ; 197: 200-211, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31029867

ABSTRACT

Functional magnetic resonance imaging (fMRI) is commonly thought to be too slow to capture any neural dynamics faster than 0.1 Hz. However, recent findings demonstrate the feasibility of detecting fMRI activity at higher frequencies beyond 0.2 Hz. The origin, reliability, and generalizability of fast fMRI responses are still under debate and await confirmation through animal experiments with fMRI and invasive electrophysiology. Here, we acquired single-echo and multi-echo fMRI, as well as local field potentials, from anesthetized rat brains given gastric electrical stimulation modulated at 0.2, 0.4 and 0.8 Hz. Such gastric stimuli could drive widespread fMRI responses at corresponding frequencies from the somatosensory and cingulate cortices. Such fast fMRI responses were linearly dependent on echo times and thus indicative of blood oxygenation level dependent nature (BOLD). Local field potentials recorded during the same gastric stimuli revealed transient and phase-locked broadband neural responses, preceding the fMRI responses by as short as 0.5 s. Taken together, these results suggest that gastric stimulation can drive widespread and rapid fMRI responses of BOLD and neural origin, lending support to the feasibility of using fMRI to detect rapid changes in neural activity up to 0.8 Hz under visceral stimulation.


Subject(s)
Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging , Stomach/physiology , Animals , Electric Stimulation , Gyrus Cinguli/physiology , Male , Neural Pathways/physiology , Rats, Sprague-Dawley , Somatosensory Cortex/physiology , Stomach/innervation
4.
Laryngoscope ; 128(6): E222-E227, 2018 06.
Article in English | MEDLINE | ID: mdl-29114904

ABSTRACT

OBJECTIVES/HYPOTHESIS: Dehydrated vocal folds are inefficient sound generators. Although systemic dehydration of the body is believed to induce vocal fold dehydration, this causative relationship has not been demonstrated in vivo. Here we investigate the feasibility of using in vivo proton density (PD)-weighted magnetic resonance imaging (MRI) to demonstrate hydration changes in vocal fold tissue following systemic dehydration in rats. STUDY DESIGN: Animal study. METHODS: Sprague-Dawley rats (n = 10) were imaged at baseline and following a 10% reduction in body weight secondary to withholding water. In vivo, high-field (7 T), PD-weighted MRI was used to successfully resolve vocal fold and salivary gland tissue structures. RESULTS: Normalized signal intensities within the vocal fold decreased postdehydration by an average of 11.38% ± 3.95% (mean ± standard error of the mean [SEM], P = .0098) as compared to predehydration levels. The salivary glands experienced a similar decrease in normalized signal intensity by an average of 10.74% ± 4.14% (mean ± SEM, P = .0195) following dehydration. The correlation coefficient (percent change from dehydration) between vocal folds and salivary glands was 0.7145 (P = .0202). CONCLUSIONS: Ten percent systemic dehydration induced vocal fold dehydration as assessed by PD-weighted MRI. Changes in the hydration state of vocal fold tissue were highly correlated with that of the salivary glands in dehydrated rats in vivo. These preliminary findings demonstrate the feasibility of using PD-weighted MRI to quantify hydration states of the vocal folds and lay the foundation for further studies that explore more routine and realistic magnitudes of systemic dehydration and rehydration. LEVEL OF EVIDENCE: NA. Laryngoscope, 128:E222-E227, 2018.


Subject(s)
Dehydration/diagnostic imaging , Magnetic Resonance Imaging , Salivary Glands/diagnostic imaging , Vocal Cords/diagnostic imaging , Animals , Dehydration/physiopathology , Magnetic Resonance Imaging/methods , Protons , Rats , Rats, Sprague-Dawley , Salivary Glands/chemistry , Salivary Glands/physiology , Vocal Cords/chemistry , Vocal Cords/physiology , Water/analysis
5.
IEEE Trans Biomed Eng ; 64(11): 2546-2554, 2017 11.
Article in English | MEDLINE | ID: mdl-28796602

ABSTRACT

The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.


Subject(s)
Gastric Emptying/physiology , Gastrointestinal Motility/physiology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Animals , Intestinal Absorption , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...