Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852127

ABSTRACT

Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.5) that are biased to the SL, while postnatally labeled (P0) astrocytes are biased to the DL. In contrast, astrocytes born during the predominantly neurogenic window (E14.5) showed a random distribution in the SL and DL. Of interest, E13.5 astrocytes birth dated at E13.5 with EdU showed a lower layer bias, while FT labeling of apical progenitors showed no bias. Finally, examination of the morphologies of "biased" E16.5- and P0-labeled astrocytes demonstrated that E16.5-labeled astrocytes exhibit different morphologies in different layers, while P0-labeled astrocytes do not. Differences based on time of birth are also observed in the molecular profiles of E16.5 versus P0-labeled astrocytes. Altogether, these results suggest that the morphological, molecular, and positional diversity of cortical astrocytes is related to their time of birth from ventricular/subventricular zone progenitors.

2.
Biomedicines ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38540276

ABSTRACT

Stroke is the leading cause of adult disability worldwide. The majority of stroke survivors are left with devastating functional impairments for which few treatment options exist. Recently, a number of studies have used ectopic expression of transcription factors that direct neuronal cell fate with the intention of converting astrocytes to neurons in various models of brain injury and disease. While there have been reports that question whether astrocyte-to-neuron conversion occurs in vivo, here, we have asked if ectopic expression of the transcription factor Neurod1 is sufficient to promote improved functional outcomes when delivered in the subacute phase following endothelin-1-induced sensory-motor cortex stroke. We used an adeno-associated virus to deliver Neurod1 from the short GFAP promoter and demonstrated improved functional outcomes as early as 28 days post-stroke and persisting to at least 63 days post-stroke. Using Cre-based cell fate tracking, we showed that functional recovery correlated with the expression of neuronal markers in transduced cells by 28 days post-stroke. By 63 days post-stroke, the reporter-expressing cells comprised ~20% of all the neurons in the perilesional cortex and expressed markers of cortical neuron subtypes. Overall, our findings indicate that ectopic expression of Neurod1 in the stroke-injured brain is sufficient to enhance neural repair.

SELECTION OF CITATIONS
SEARCH DETAIL
...