Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Arch Allergy Immunol ; 184(1): 76-84, 2023.
Article in English | MEDLINE | ID: mdl-36273440

ABSTRACT

BACKGROUND: The diagnostic yield of next-generation sequencing (NGS) technologies in the diagnosis of monogenic inborn errors of immunity (IEI) remains limited, rarely exceeding 30%. Monoallelic pathogenic germline variants in cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) result in variable immunodeficiency and immune dysregulation. The genetic diagnosis of CTLA-4 insufficiency can affect follow-up procedures and may lead to consideration of treatment with CTLA-4-Ig. OBJECTIVES: The aim of the study was to identify the genetic cause of familial immunodeficiency and immune dysregulation in cases where single nucleotide variant analysis of short-read NGS data yielded no diagnostic result. METHODS: Analysis of copy number variants (CNVs) was applied on short-read NGS data. RESULTS: We identified a novel monoallelic deletion-insertion variant in CTLA-4 (c.445_568-544delinsTTTGCGATTG) resulting in familial autoimmunity. This is the second larger scale variant in CTLA-4, which despite consistently reduced expression of CTLA-4 displayed variable expressivity, ranging from typical juvenile idiopathic arthritis to common variable immunodeficiency-like immunodeficiency. CONCLUSIONS: Our report suggests the significance of integration of CNV analysis in routine evaluation of NGS, which may increase its diagnostic yield in IEI.


Subject(s)
Common Variable Immunodeficiency , Immunologic Deficiency Syndromes , Humans , Genetic Testing/methods , CTLA-4 Antigen/genetics , DNA Copy Number Variations , Abatacept/genetics , Immunologic Deficiency Syndromes/genetics , High-Throughput Nucleotide Sequencing/methods , Common Variable Immunodeficiency/genetics
2.
Front Immunol ; 13: 1029423, 2022.
Article in English | MEDLINE | ID: mdl-36275728

ABSTRACT

Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.


Subject(s)
Skin Diseases, Vascular , Vascular Diseases , Humans , Membrane Proteins/genetics , Mutation , Vascular Diseases/genetics , Interferons/genetics
3.
Transplantation ; 103(11): 2234-2244, 2019 11.
Article in English | MEDLINE | ID: mdl-31205263

ABSTRACT

BACKGROUND: Graft-versus-host disease (GvHD) presents a major cause for morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Rabbit-derived antithymocyte globulin (rATG) treatment reduces the incidence of GvHD after allogeneic hematopoietic stem cell transplantation. However, delayed immune reconstitution following rATG treatment, partly caused by hampered thymic function, is being discussed. The present study aims at elucidating possible cytotoxic effects of 2 commonly used rATG preparations on cultured human thymic stroma, especially thymic epithelial cells (TECs). METHODS: A primary TEC culture was established and the binding and cytotoxicity of 2 rATG preparations to the aforementioned cells were assessed by flow cytometry and immunofluorescence analyses. The release of several cytokines by cultured thymic stroma cells in response to rATG was analyzed via multiplex enzyme-linked immunosorbent assays. RESULTS: Both preparations showed a comparable dose-dependent binding to TECs and exerted a similar complement-independent, dose-dependent cytotoxicity. rATG exposure further resulted in hampered secretion of interleukin (IL)-7, IL-15, and IL-6, cytokines being involved in thymic T cell development and proliferation. Pretreatment with keratinocyte growth factor diminished rATG-induced cytotoxicity of TECs and restored their IL-7 and IL-15 secretion. CONCLUSIONS: Cytotoxic effects on TECs link the rATG-induced thymic damage to the delayed T cell reconstitution, witnessed after rATG treatment. Our data support a combination treatment of rATG and thymus-protective strategies such as keratinocyte growth factor to simultaneously offer sufficient GvHD prophylaxis and overcome delayed T cell reconstitution caused by thymic damage.


Subject(s)
Antilymphocyte Serum/immunology , Epithelial Cells/immunology , Graft vs Host Disease/immunology , Thymus Gland/cytology , Animals , Cell Culture Techniques , Cell Proliferation , Child, Preschool , Complement System Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Fibroblast Growth Factor 7/pharmacology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Infant, Newborn , Interleukin-15/immunology , Interleukin-6/immunology , Interleukin-7/immunology , Jurkat Cells , Rabbits , T-Lymphocytes/immunology , Thymocytes/cytology , Transplantation, Homologous/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...