Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 69(11): 2267-2280, 2020 11.
Article in English | MEDLINE | ID: mdl-32873590

ABSTRACT

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control (CON) women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle, improving glucose uptake and metabolism in both healthy individuals and patients with type 2 diabetes. In the current study, lean hyperandrogenic women with PCOS (n = 9) and healthy CON women (n = 9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole-body insulin action by 26% and insulin-stimulated leg glucose uptake by 53% together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in VO2max In skeletal muscle of CON but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole-body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose-handling proteins for insulin-stimulated glucose uptake in skeletal muscle and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


Subject(s)
Exercise/physiology , Hyperandrogenism/metabolism , Insulin , Polycystic Ovary Syndrome/metabolism , Adaptation, Physiological , Female , Homeostasis , Humans , Liver/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction , Testosterone/blood
2.
Physiol Rep ; 6(13): e13798, 2018 07.
Article in English | MEDLINE | ID: mdl-29998629

ABSTRACT

A low-protein high carbohydrate (LPHC) diet and a high-protein low carbohydrate (HPLC) diet have been reported to positively and negatively regulate whole-body glucose tolerance and insulin sensitivity, respectively. Skeletal muscle is quantitatively the most important tissue clearing glucose in the postprandial state, but it is unclear if LPHC and HPLC diets directly influence insulin action in skeletal muscle. To test this, mice were placed on control chow diet, LPHC and HPLC diets for 13.5 weeks at which time the submaximal insulin-stimulated glucose transport and insulin signaling were evaluated in ex vivo incubated oxidative soleus and glycolytic EDL muscle. At the whole-body level, the diets had the anticipated effects, with LPHC diet improving glucose tolerance and insulin-sensitivity whereas HPLC diet had the opposite effect. However, neither insulin-stimulated Akt/TBC1D4 signaling and glucose transport ex vivo, nor cell signaling in vivo were altered by the diets. These data imply that skeletal muscle insulin sensitivity does not contribute to the whole-body effects of LPHC and HPLC diets on glucose metabolism.


Subject(s)
Diet, Carbohydrate Loading , Diet, High-Protein Low-Carbohydrate , Insulin/metabolism , Muscle, Skeletal/metabolism , Animals , Female , GTPase-Activating Proteins/metabolism , Glucose/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...