Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 750478, 2021.
Article in English | MEDLINE | ID: mdl-34912334

ABSTRACT

Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.


Subject(s)
CD28 Antigens/immunology , CD40 Ligand/immunology , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Humans , Neoplasms/therapy , Tumor Microenvironment/immunology
2.
Cancer Res ; 77(13): 3577-3590, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28533272

ABSTRACT

Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/transplantation , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Neoplasms/immunology , Protein Engineering , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...