Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 64(8): 1295-1303, 2023 08.
Article in English | MEDLINE | ID: mdl-37268423

ABSTRACT

Radiopharmaceutical dosimetry is usually estimated via organ-level MIRD schema-style formalisms, which form the computational basis for commonly used clinical and research dosimetry software. Recently, MIRDcalc internal dosimetry software was developed to provide a freely available organ-level dosimetry solution that incorporates up-to-date models of human anatomy, addresses uncertainty in radiopharmaceutical biokinetics and patient organ masses, and offers a 1-screen user interface as well as quality assurance tools. The present work describes the validation of MIRDcalc and, secondarily, provides a compendium of radiopharmaceutical dose coefficients obtained with MIRDcalc. Biokinetic data for about 70 currently and historically used radiopharmaceuticals were obtained from the International Commission on Radiological Protection (ICRP) publication 128 radiopharmaceutical data compendium. Absorbed dose and effective dose coefficients were derived from the biokinetic datasets using MIRDcalc, IDAC-Dose, and OLINDA software. The dose coefficients obtained with MIRDcalc were systematically compared against the other software-derived dose coefficients and those originally presented in ICRP publication 128. Dose coefficients computed with MIRDcalc and IDAC-Dose showed excellent overall agreement. The dose coefficients derived from other software and the dose coefficients promulgated in ICRP publication 128 both were in reasonable agreement with the dose coefficients computed with MIRDcalc. Future work should expand the scope of the validation to include personalized dosimetry calculations.


Subject(s)
Pamphlets , Radiopharmaceuticals , Humans , Radiometry , Software , Phantoms, Imaging , Radiation Dosage
2.
J Nucl Med ; 64(7): 1117-1124, 2023 07.
Article in English | MEDLINE | ID: mdl-37268428

ABSTRACT

Medical internal radiation dosimetry constitutes a fundamental aspect of diagnosis, treatment, optimization, and safety in nuclear medicine. The MIRD committee of the Society of Nuclear Medicine and Medical Imaging developed a new computational tool to support organ-level and suborgan tissue dosimetry (MIRDcalc, version 1). Based on a standard Excel spreadsheet platform, MIRDcalc provides enhanced capabilities to facilitate radiopharmaceutical internal dosimetry. This new computational tool implements the well-established MIRD schema for internal dosimetry. The spreadsheet incorporates a significantly enhanced database comprising details for 333 radionuclides, 12 phantom reference models (International Commission on Radiological Protection), 81 source regions, and 48 target regions, along with the ability to interpolate between models for patient-specific dosimetry. The software also includes sphere models of various composition for tumor dosimetry. MIRDcalc offers several noteworthy features for organ-level dosimetry, including modeling of blood source regions and dynamic source regions defined by user input, integration of tumor tissues, error propagation, quality control checks, batch processing, and report-preparation capabilities. MIRDcalc implements an immediate, easy-to-use single-screen interface. The MIRDcalc software is available for free download (www.mirdsoft.org) and has been approved by the Society of Nuclear Medicine and Molecular Imaging.


Subject(s)
Pamphlets , Radiometry , Humans , Radiometry/methods , Software , Radioisotopes , Radiotherapy Dosage
4.
Phys Med Biol ; 66(12)2021 06 07.
Article in English | MEDLINE | ID: mdl-34015770

ABSTRACT

Modern CT iterative reconstruction algorithms are transitioning from a statistical-based to model-based approach. However, increasing complexity does not ensure improved image quality for all indications, and thorough characterization of new algorithms is important to understand their potential clinical impacts. This study performs both quantitative and qualitative analyses of image quality to compare Canon's statistical-based Adaptive Iterative Dose Reduction 3D (AIDR 3D) algorithm to its model-based algorithm, Forward-projected model-based Iterative Reconstruction SoluTion(FIRST). A phantom was used to measure the task-specific modulation transfer function (MTFTask), the noise power spectrum (NPS), and the low-contrast object-specific CNR (CNRLO) for each algorithm using three dose levels and the convolution algorithm (kernel) appropriate for abdomen, lung, and brain imaging. Additionally, MTFTaskwas measured at four contrast levels, and CNRLOwas measured for two object sizes. Lastly, three radiologists participated in a preference study to compare clinical image quality for three study types: non-contrast abdomen, pulmonary embolism (PE), and lung screening. Nine questions related to the appearance of anatomical features or image quality characteristics were scored for twenty exams of each type. The behavior of both algorithms depended strongly on the kernel selected. Phantom measurements suggest that FIRST should be beneficial over AIDR 3D for abdomen imaging, but do not suggest a clear overall benefit to FIRST for lung or brain imaging; metrics suggest performance may be equivalent to or slightly favor AIDR 3D, depending on the size of the object being imaged and whether spatial resolution or low-contrast resolution is more important for the task at hand. Overall, radiologists strongly preferred AIDR 3D for lung screening, slightly preferred AIDR 3D for non-contrast abdomen, and had no preference for PE. FIRST was superior for the reduction of metal artifacts. Radiologist preference may be influenced by changes to noise texture.


Subject(s)
Drug Tapering , Tomography, X-Ray Computed , Algorithms , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted
5.
Phys Med Biol ; 65(23): 235015, 2020 12 02.
Article in English | MEDLINE | ID: mdl-32992308

ABSTRACT

Accurate estimates of tumor absorbed dose are essential for the evaluation of treatment efficacy in radiopharmaceutical cancer therapy. Although tumor dosimetry via the MIRD schema has been previously investigated, prior studies have been limited to the consideration of soft-tissue tumors. In the present study, specific absorbed fractions (SAFs) for monoenergetic photons, electrons, and alpha particles in tumors of varying compositions were computed using Monte Carlo simulations in MCNPX after which self-irradiation S-values for 22 radionuclides (along with 14 additional alpha-emitter progeny) were generated for tumors of both varying size and tissue composition. The tumors were modeled as spheres with radii ranging from 0.10 cm to 6.0 cm and with compositions varying from 100% soft tissue (ST) to 100% mineral bone (MB). The energies of the photons and electrons were varied on a logarithm energy grid from 10 keV to 10 MeV. The energies of alpha particles were varied along a linear energy grid from 0.5 MeV to 12 MeV. In all cases, a homogenous activity distribution was assumed throughout the tumor volume. Furthermore, to assess the effect of tumor shape, several ellipsoidal tumors of different compositions were modeled and absorbed fractions were computed for monoenergetic electrons and photons. S-values were then generated using detailed decay data from the 2008 MIRD Monograph on Radionuclide Data and Decay Schemes. Our study results demonstrate that a soft-tissue model yields relative errors of 25% and 71% in the absorbed fraction assigned to uniform sources of 1.5 MeV electrons and 100 keV photons, respectively, localized within a 1 cm diameter tumor of MB. The data further show that absorbed fractions for moderate ellipsoids can be well approximated by a spherical shape of equal mass within a relative error of < 8%. S-values for 22 radionuclides (and their daughter progeny) were computed with results demonstrating how relative errors in SAFs could propagate to relative errors in tumor dose estimates as high as 86%. A comprehensive data set of radionuclide S-values by tumor size and tissue composition is provided for application of the MIRD schema for tumor dosimetry in radiopharmaceutical therapy.


Subject(s)
Alpha Particles , Electrons , Monte Carlo Method , Neoplasms/pathology , Photons , Radionuclide Imaging/methods , Radiopharmaceuticals/metabolism , Computer Simulation , Humans , Neoplasms/classification , Neoplasms/diagnostic imaging , Neoplasms/metabolism
6.
J Appl Clin Med Phys ; 21(8): 263-271, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32519415

ABSTRACT

PURPOSE: Most clinical computed tomography (CT) protocols use helical scanning; however, the traditional method for CTDIvol measurement replaces the helical protocol with an axial scan, which is not easily accomplished on many scanners and may lead to unmatched collimation settings and bowtie filters. This study assesses whether CTDIvol can be accurately measured with a helical scan and determines the impact of pitch, collimation width, and excess scan length. METHODS: CTDIvol was measured for 95 helical protocols on 31 CT scanners from all major manufacturers. CTDIvol was measured axially, then again helically, with the scan range set to the active area of the pencil chamber seen on the localizer image. CTDIvol measurements using each method were compared to each other and to the scanner-displayed CTDIvol . To test the impact of scan length, the study was repeated on four scanners, with the scan range set to the phantom borders seen on the localizer. RESULTS: It was not possible to match the collimation width between the axial and helical modes for 12 of the 95 protocols tested. For helical and axial protocols with matched collimation, the difference between the two methods averaged below 1 mGy with a correlation of R2  = 0.99. The difference between the methods was not statistically significant (P = 0.81). The traditional method produced four measurements that differed from the displayed CTDIvol by >20%; no helical measurements did. The accuracy of the helical CTDIvol was independent of protocol pitch (R2  = 0.0) or collimation (R2  = 0.0). Extending the scan range to the phantom borders increased the measured CTDIvol by 2.1%-9.7%. CONCLUSION: There was excellent agreement between the two measurement methods and to the displayed CTDIvol , without protocol or vendor dependence. The helical CTDIvol measurement can be accomplished more easily than the axial method on many scanners and is reasonable to use for QC purposes.


Subject(s)
Tomography, X-Ray Computed , Humans , Phantoms, Imaging , Radiation Dosage , Tomography Scanners, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...