Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Genet Biol ; 136: 103292, 2020 03.
Article in English | MEDLINE | ID: mdl-31730908

ABSTRACT

Ras-GTPases are nucleotide hydrolases involved in key cellular processes. In fungi, Ras-GTPases regulate conidiation, development, virulence, and interactions with other fungi or plants. Trichoderma spp. are filamentous saprophytic fungi, widely distributed along all latitudes, characterized by their rapid growth and metabolic diversity. Many species of this genus interact with other fungi, animals or plants. Furthermore, these fungi are used as biocontrol agents due to their ability to antagonize phytopathogenic fungi and oomycetes, through competence, antibiosis, and parasitism. However, the genetic and molecular regulation of these processes is scarcely described in these fungi. In this work, we investigated the role of the gene tbrg-1 product (GenBank accession number XP_013956100; JGI ID: Tv_70852) of T. virens during its interaction with other fungi and plants. Sequence analyses predicted that TBRG-1 bears the characteristic domains of Ras-GTPases; however, its size (1011 aa) is 3- to 4-times bigger compared with classical GTPases. Interestingly, phylogenetic analyses grouped the TBRG-1 protein with hypothetical proteins of similar sizes, sharing conserved regions; whereas other known Ras-GTPases were perfectly grouped with their respective families. These facts led us to classify TBRG-1 into a new family of Ras-GTPases, the Big Ras-GTPases (BRG). Therefore, the gene was named tbrg-1 (TrichodermaBigRas-GTPase-1). Quantification of conidia and scanning electron microscopy showed that the mutants-lacking tbrg-1 produced less conidia, as well as a delayed conidiophore development compared to the wild-type (wt). Moreover, a deregulation of conidiation-related genes (con-10, con-13, and stuA) was observed in tbrg-1-lacking strains, which indicates that TBRG-1 is necessary for proper conidiophore and conidia development. Furthermore, the lack of tbrg-1 affected positively the antagonistic capability of T. virens against the phytopathogens Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum, which was consistent with the expression patterns of mycoparasitism-related genes, sp1 and cht1, that code for a protease and for a chitinase, respectively. Furthermore, the antibiosis effect of mycelium-free culture filtrates of Δtbrg-1 against R. solani was considerably enhanced. The expression of secondary metabolism-related genes, particularly gliP, showed an upregulation in Δtbrg-1, which paralleled an increase in gliotoxin production as compared to the wt. These results indicate that TBRG-1 plays a negative role in secondary metabolism and antagonism. Unexpectedly, the biocontrol activity of Δtbrg-1 was ineffective to protect the tomato seeds and seedlings against R. solani. On the contrary, Δtbrg-1 behaved like a plant pathogen, indicating that TBRG-1 is probably implicated in the recognition process for establishing a beneficial relationship with plants.


Subject(s)
Hypocrea/enzymology , Hypocrea/genetics , ras Proteins/genetics , ras Proteins/metabolism , Antibiosis/genetics , Basidiomycota/growth & development , Biological Control Agents , DNA, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/growth & development , Gene Expression Regulation, Fungal , Host Microbial Interactions , Hypocrea/growth & development , Microbial Interactions/genetics , Mutation , Phylogeny , Plant Diseases/microbiology , Rhizoctonia/growth & development , Secondary Metabolism/genetics , Spores, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...