Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6167, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794009

ABSTRACT

Kagome lattice hosts a plethora of quantum states arising from the interplay of topology, spin-orbit coupling, and electron correlations. Here, we report symmetry-breaking electronic orders tunable by an applied magnetic field in a model Kagome magnet FeSn consisting of alternating stacks of two-dimensional Fe3Sn Kagome and Sn2 honeycomb layers. On the Fe3Sn layer terminated FeSn thin films epitaxially grown on SrTiO3(111) substrates, we observe trimerization of the Kagome lattice using scanning tunneling microscopy/spectroscopy, breaking its six-fold rotational symmetry while preserving the translational symmetry. Such a trimerized Kagome lattice shows an energy-dependent contrast reversal in dI/dV maps, which is significantly enhanced by bound states induced by Sn vacancy defects. This trimerized Kagome lattice also exhibits stripe modulations that are energy-dependent and tunable by an applied in-plane magnetic field, indicating symmetry-breaking nematicity from the entangled magnetic and charge degrees of freedom in antiferromagnet FeSn.

2.
ACS Appl Mater Interfaces ; 15(18): 22644-22650, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37125966

ABSTRACT

Scanning tunneling microscopy (STM) is a powerful technique for imaging atomic structure and inferring information on local elemental composition, chemical bonding, and electronic excitations. However, a plain visual analysis of STM images can be challenging for such determination in multicomponent alloys, particularly beyond the diluted limit due to chemical disorder and electronic inhomogeneity. One viable solution is to use machine learning to analyze STM data and identify hidden patterns and correlations. Here, we apply this approach to determine the Se/S concentration in superconducting single-layer FeSe1-xSx alloys epitaxially grown on SrTiO3(001) substrates via molecular beam epitaxy. First, the K-means clustering method is applied to identify defect-related dI/dV tunneling spectra taken by current imaging tunneling spectroscopy. Then, the Se/S ratio is calculated by analyzing the remaining spectra based on the singular value decomposition method. Such analysis provides an efficient and reliable determination of alloy composition and further reveals the correlations of nanoscale chemical inhomogeneity to superconductivity in single-layer iron chalcogenide films.

SELECTION OF CITATIONS
SEARCH DETAIL
...