Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Syst Rehabil Eng ; 27(10): 2135-2144, 2019 10.
Article in English | MEDLINE | ID: mdl-31545732

ABSTRACT

The common spatial pattern (CSP) method is a dimensionality reduction technique widely used in brain-computer interface (BCI) systems. In the two-class CSP problem, training data are linearly projected onto directions maximizing or minimizing the variance ratio between the two classes. The present contribution proves that kurtosis maximization performs CSP in an unsupervised manner, i.e., with no need for labeled data, when the classes follow Gaussian or elliptically symmetric distributions. Numerical analyses on synthetic and real data validate these findings in various experimental conditions, and demonstrate the interest of the proposed unsupervised approach.


Subject(s)
Brain-Computer Interfaces , Algorithms , Computer Simulation , Electroencephalography , Electrooculography , Healthy Volunteers , Humans , Imagination , Normal Distribution
2.
IEEE Trans Neural Syst Rehabil Eng ; 27(5): 895-904, 2019 05.
Article in English | MEDLINE | ID: mdl-30990183

ABSTRACT

In brain-computer interfaces (BCIs), the typical models of the EEG observations usually lead to a poor estimation of the trial covariance matrices, given the high non-stationarity of the EEG sources. We propose the application of two techniques that significantly improve the accuracy of these estimations and can be combined with a wide range of motor imagery BCI (MI-BCI) methods. The first one scales the observations in such a way that implicitly normalizes the common temporal strength of the source activities. When the scaling applies independently to the trials of the observations, the procedure justifies and improves the classical preprocessing for the EEG data. In addition, when the scaling is instantaneous and independent for each sample, the procedure particularizes to Tyler's method in statistics for obtaining a distribution-free estimate of scattering. In this case, the proposal provides an original interpretation of this existing method as a technique that pursuits an implicit instantaneous power-normalization of the underlying source processes. The second technique applies to the classifier and improves its performance through a convenient regularization of the features covariance matrix. Experimental tests reveal that a combination of the proposed techniques with the state-of-the-art algorithms for motor-imagery classification provides a significant improvement in the classification results.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/methods , Imagination , Signal Processing, Computer-Assisted , Algorithms , Computer Simulation , Humans , Models, Theoretical , Movement , Normal Distribution
3.
Entropy (Basel) ; 20(1)2018 Jan 02.
Article in English | MEDLINE | ID: mdl-33265109

ABSTRACT

Brain computer interfaces (BCIs) have been attracting a great interest in recent years. The common spatial patterns (CSP) technique is a well-established approach to the spatial filtering of the electroencephalogram (EEG) data in BCI applications. Even though CSP was originally proposed from a heuristic viewpoint, it can be also built on very strong foundations using information theory. This paper reviews the relationship between CSP and several information-theoretic approaches, including the Kullback-Leibler divergence, the Beta divergence and the Alpha-Beta log-det (AB-LD)divergence. We also revise other approaches based on the idea of selecting those features that are maximally informative about the class labels. The performance of all the methods will be also compared via experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...