Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36983467

ABSTRACT

Multi-contamination by organic pollutants and toxic metals is common in anthropogenic and industrial environments. In this study, the five fungal strains Chaetomium jodhpurense (MH667651.1), Chaetomium maderasense (MH665977.1), Paraconiothyrium variabile (MH667653.1), Emmia lacerata, and Phoma betae (MH667655.1), previously isolated in Tunisia, were investigated for the simultaneous removal and detoxification of phenanthrene (PHE) and benzo[a]anthracene (BAA), as well as heavy metals (HMs) (Cu, Zn, Pb and Ag) in Kirk's media. The removal was analysed using HPLC, ultra-high performance liquid chromatography (UHPLC) coupled to a QToF mass spectrometer, transmission electron microscopy, and toxicology was assessed using phytotoxicity (Lepidium sativum seeds) and Microtox® (Allivibrio fisherii) assays. The PHE and BAA degradation rates, in free HMs cultures, reached 78.8% and 70.7%, respectively. However, the addition of HMs considerably affected the BAA degradation rate. The highest degradation rates were associated with the significant production of manganese-peroxidase, lignin peroxidase, and unspecific peroxygenase. The Zn and Cu removal efficacy was considerably higher with live cells than dead cells. Transmission electron microscopy confirmed the involvement of both bioaccumulation and biosorption processes in fungal HM removal. The environmental toxicological assays proved that simultaneous PAH and HM removal was accompanied by detoxification. The metabolites produced during co-treatment were not toxic for plant tissues, and the acute toxicity was reduced. The obtained results indicate that the tested fungi can be applied in the remediation of sites simultaneously contaminated with PAHs and HMs.

2.
Curr Microbiol ; 79(12): 373, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36302918

ABSTRACT

Microbial biotechnology uses microorganisms and their derivatives to generate industrial and/or environmental products that impact daily life. Modern biotechnology uses proteomics, metabolomics, quantum processors, and massive sequencing methods to yield promising results with microorganisms. However, the fundamental concepts of microbial biotechnology focus on the specific search for microorganisms from natural sources and their correct analysis to implement large-scale processes. This mini-review focuses on the methods used for the isolation and selection of microorganisms with biotechnological potential to empathize the importance of these concepts in microbial biotechnology. In this work, a review of the state of the art in recent years on the selection and characterization of microorganisms with a basic approach to understanding the importance of fundamental concepts in the field of biotechnology was carried out. The proper selection of isolation sources and the design of suitable selection criteria according to the desired activity have generated substantial changes in the development of biotechnology for more than three decades. Some examples include Taq polymerase in the PCR method and CRISPR technology. The objective of this mini review is to establish general ideas for the screening of microorganisms based on basic concepts of biotechnology that are left aside in several articles and maintain the importance of the basic concepts that this implies in the development of modern biotechnology.


Subject(s)
Biotechnology , Proteomics , Biotechnology/methods
3.
Curr Microbiol ; 76(8): 917-926, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30689003

ABSTRACT

The basidiomycete Ustilago maydis is a biotrophic organism responsible for corn smut disease. In recent years, it has become one of the most promising models for biochemical and biotechnological research due to advantages, such as rapid growth, and easy genetic manipulation. In some aspects, this yeast is more similar to complex eukaryotes, such as humans, compared to standard laboratory yeast models. U. maydis can be employed as a tool to explore physiological processes with more versatility than other fungi. Previously, U. maydis was only considered as a phytopathogenic fungus, but different studies have shown its potential as a research model. Therefore, numerous promising studies have focused on deepening our understanding of the natural interactions, enzyme production, and biotechnological capacity. In this review, we explore general characteristics of U. maydis, both as pathogenic and "innocuous" basidiomycete. Additionally, a comparison with other yeast models focusing on genetic, biochemical, and biotechnological research are analyzed, to emphasize the versatility, dynamism, and novelty that U. maydis has as a research model. In this review, we highlight the applications of the yeast form of the fungus; however, since the filamentous form is also of relevance, it is addressed in the present work, as well.


Subject(s)
Biotechnology/methods , Genetics, Microbial/methods , Metabolic Networks and Pathways/genetics , Ustilago/genetics , Ustilago/metabolism , Models, Biological , Plant Diseases/microbiology , Ustilago/pathogenicity , Zea mays/microbiology
4.
Front Microbiol ; 8: 1792, 2017.
Article in English | MEDLINE | ID: mdl-28979245

ABSTRACT

Pharmaceuticals represent an immense business with increased demand due to intensive livestock raising and an aging human population, which guarantee the quality of human life and well-being. However, the development of removal technologies for these compounds is not keeping pace with the swift increase in their use. Pharmaceuticals constitute a potential risk group of multiclass chemicals of increasing concern since they are extremely frequent in all environments and have started to exhibit negative effects on micro- and macro-fauna as well as on human health. In this context, fungi are known to be extremely diverse and poorly studied microorganisms despite being well suited for bioremediation processes, taking into account their metabolic and physiological characteristics for the transformation of even highly toxic xenobiotic compounds. Increasing studies indicate that fungi can transform many structures of pharmaceutical compounds, including anti-inflammatories, ß-blockers, and antibiotics. This is possible due to different mechanisms in combination with the extracellular and intracellular enzymes, which have broad of biotechnological applications. Thus, fungi and their enzymes could represent a promising tool to deal with this environmental problem. Here, we review the studies performed on pharmaceutical compounds biodegradation by the great diversity of these eukaryotes. We examine the state of the art of the current application of the Basidiomycota division, best known in this field, as well as the assembly of novel biodegradation pathways within the Ascomycota division and the Mucoromycotina subdivision from the standpoint of shared enzymatic systems, particularly for the cytochrome P450 superfamily of enzymes, which appear to be the key enzymes in these catabolic processes. Finally, we discuss the latest advances in the field of genetic engineering for their further application.

SELECTION OF CITATIONS
SEARCH DETAIL
...