Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(7): 4229-4249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875321

ABSTRACT

This study investigates the aromatic composition of pea albumin and globulin fractions obtained through either fermentation or conventional acidification using hydrochloric acid (control) toward the isoelectric point of pea globulins. Different lactic acid bacteria were used including S. thermophilus (ST), L. plantarum (LP), and their coculture (STLP). The volatile compounds were extracted by solvent-assisted flavor evaporation technique and quantified by gas chromatography-mass spectrometry (GC-MS). Odor-active compounds (OAC) were further characterized by gas chromatography-olfactometry (GC-O). In total, 96 volatile and 36 OACs were identified by GC-MS and GC-O, respectively. The results indicated that the protein fractions obtained by conventional acidification were mainly described by green notes for the presence of different volatile compounds such as hexanal. However, the samples obtained by fermentation had a lower content of these volatile compounds. Moreover, protein fractions obtained by coculture fermentation were described by volatile compounds associated with fruity, floral, and lactic notes. PRACTICAL APPLICATION: The insights from this study on pea protein aroma could find practical use in the food industry to enhance the sensory qualities of plant-based products. By utilizing fermentation methods and specific lactic acid bacteria combinations, manufacturers may produce pea protein with reduced undesirable green notes, offering consumers food options with improved flavors. This research may contribute to the development of plant-based foods that not only provide nutritional benefits but also meet consumer preferences for a more appealing taste profile.


Subject(s)
Fermentation , Gas Chromatography-Mass Spectrometry , Odorants , Pea Proteins , Pisum sativum , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Odorants/analysis , Pea Proteins/chemistry , Gas Chromatography-Mass Spectrometry/methods , Pisum sativum/chemistry , Olfactometry/methods , Lactobacillus plantarum/metabolism , Flavoring Agents , Humans , Streptococcus thermophilus/metabolism
2.
Foods ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540863

ABSTRACT

Sheep milk from local breeds is important for the production of high-quality cheeses throughout the Mediterranean region, such as Manchego cheese in Spain. To maintain sustainable and efficient production, it is necessary to reach a better understanding of how the composition and hygiene of the milk affect the coagulation process, with the aim of optimizing production yield. This study implemented a stochastic production frontier function to estimate the potential production of curd and efficiency using data from the four seasons of a study of 77 Manchega sheep farms. The Cobb-Douglas production frontier model was estimated using the maximum likelihood estimation method. The results showed that the content of protein, lactose, and fat exhibited increasing returns to scale, with protein content being the most significant factor for curd production. Approximately half of the inefficiency was due to factors related to the technological properties and the hygiene of the milk. The pH, curd firmness, and concentration of lactic acid bacteria improved the efficiency of coagulation, while the concentration of spores of lactate-fermenting Clostridium spp., Pseudomonas spp., staphylococci, and catalase-negative gram-positive cocci favored the inefficiency of the coagulation process. To date, this is the first study to evaluate the effect of different factors, such as microbial groups, milk composition, and technological properties, on the efficiency of the coagulation process in dairy sheep.

3.
Foods ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540875

ABSTRACT

This study conducted a seasonal analysis of bulk tank milk from 77 sheep farms to establish relationships between the concentration of major microbial groups and milk coagulation properties. The investigated milk traits included composition (pH, fat, casein, lactose), coagulation properties (curd firmness: A60-, rennet clotting time: RCT-, curd firming time: k20-, curd yield: CY-), and somatic cell score (SCS). The main microbial groups analyzed were total mesophilic bacteria (SPC), thermodurics (THERMO), psychrotrophs (PSYCHRO), Pseudomonas spp. (PSEUDO), lactic acid bacteria (LAB), catalase-negative gram-positive cocci (GPCNC), Escherichia coli (ECOLI), coliforms other than Escherichia coli (COLI), coagulase-positive staphylococci (CPS), coagulase-negative staphylococci (CNS), and spores of lactate-fermenting Clostridium (BAB). Mixed linear models were used to explore associations between coagulation properties and the aforementioned variables. Results demonstrated that incorporating microbial loads into the models improves their fit and the relative quality of the outcomes. An important seasonality is demonstrated by an increase in CY and A60, along with a decrease in RCT and k20 during autumn and winter, contrasting with spring and summer. BAB concentration resulted in a reduction of A60 and an increase in RCT, whereas SPC concentration led to an enhancement of A60 and a reduction in RCT. An increase in GPCNC concentration was associated with an increase in k20 and a decrease in CY.

4.
Front Nutr ; 10: 1284413, 2023.
Article in English | MEDLINE | ID: mdl-38024383

ABSTRACT

Pea albumins are promising for their nutritional, biological, and techno-functional properties. However, this fraction is usually discarded in the industry due to its low protein content compared to globulin fraction and the presence of some anti-nutritional compounds. In the present study, we used an alternative method of pea protein extraction based on alkaline solubilization/isoelectric precipitation in which the reduction of pH was achieved by lactic acid fermentation using specific starters instead of mineral acids. Hence, the main objective of this study was to examine the protein profile and the content of anti-nutritional and nutritional active compounds in pea albumin-rich fractions obtained by the isoelectric extraction method without (control) or with fermentation with different lactic acid bacteria (Streptococcus thermophilus, Lactiplantibacillus plantarum, and their co-culture). Different pea cultivars (Cartouche, Ascension, and Assas) were used here for their differences in protein profile. The results revealed a higher total nitrogen content in albumin-rich fraction for fermented samples and, in particular, for co-culture. The majority of total nitrogen was determined as non-protein (~50%), suggesting the degradation of proteins by LAB to small peptides and amino acids, which were solubilized in the soluble fraction (albumin) as confirmed by size exclusion chromatography (SEC-HPLC) analysis. Moreover, the higher antioxidant activity of fermented albumin samples was attributed to the production of small peptides during extraction. Lactic acid fermentation also resulted in a significant reduction of trypsin inhibitor activity, α-galactoside, and phytic acid content of this fraction compared to control.

5.
J Sci Food Agric ; 102(11): 4942-4948, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35275406

ABSTRACT

BACKGROUND: The presence of secondary metabolites responsible for off-flavours in peas may influence consumers' acceptance. These undesirable compounds may increase due to biotic stress or cultivar. Therefore, grains from two pea (Pisum sativum L.) cultivars (Crécerelle and Firenza) exposed to biotic stress were studied in terms of protein content, electrophoretic polypeptide profile, lipoxygenase activity, saponin content and volatile compounds. RESULTS: No differences were observed in the electrophoretic polypeptide profile of pea samples across cultivar or biotic stress. The cultivar noticeably affected the volatile compounds and lipoxygenase activity. The biotic stress significantly increased the saponin content. CONCLUSION: The cultivar showed more noticeable impact on the presence of off-flavour compounds than the biotic stress. The development of pea protein ingredients needs the thorough choice of raw materials in terms of cultivar and control of biotic stress in order to ensure acceptance by consumers. © 2022 Society of Chemical Industry.


Subject(s)
Pisum sativum , Saponins , Lipoxygenases/analysis , Lipoxygenases/metabolism , Pisum sativum/chemistry , Saponins/analysis , Seeds/chemistry , Stress, Physiological
6.
Foods ; 10(3)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800873

ABSTRACT

Although pea protein has been widely explored, its consumption is still limited by undesirable sensory characteristics and low solubility. All these properties can be modified during protein extraction process. Besides, previous studies showed that lactic acid bacteria (LAB) have a positive effect on legume protein ingredients in terms of flavor and functional properties. Hence, the objective of this work was to explore an alternative extraction method based on alkaline extraction/isoelectric precipitation (AEIEP) resulting in globulin-rich and residual albumin-rich fractions. Here, the decrease in pH was achieved by lactic fermentation instead of mineral acid addition. Different bacteria strains (Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacterium lactis) have been used alone or in co-culture, and the results were compared with the usual acidification. The extraction assisted by fermentation led to the increase by 20-30% in protein content/yield of the albumin fraction, meaning that the solubility of the extracted pea protein was increased. This result could be explained by the proteolytic activity of bacteria during lactic fermentation. Therefore, the thermal denaturation properties of the isolated protein fractions measured by differential scanning calorimetry could be mainly ascribed to differences in their polypeptide compositions. In particular, higher denaturation enthalpy in globulin fractions after fermentation compared to AEIEP (~15 J/g protein vs. ~13 J/g protein) revealed the relative enrichment of this fraction in pea legumins; a higher part of 7S globulins seemed to be consumed by lactic acid bacteria.

7.
Food Res Int ; 119: 444-454, 2019 05.
Article in English | MEDLINE | ID: mdl-30884676

ABSTRACT

The effects of microfluidization and drying method on the characteristics and techno-functional properties of pea (Pisum sativum L.) globulin aggregates were investigated. Pea globulin aggregates were microfluidized at 130 MPa and spray-dried or freeze-dried thereafter. Microfluidization decreased aggregate size and surface hydrophobicity due to protein re-arrangements. Microfluidized pea globulin aggregates showed higher solubility but less suspension stability than non-microfluidized aggregates. Drying favored the re-aggregation of pea globulins with modifications in secondary structure of proteins more marked for spray-drying, decreased surface hydrophobicity and solubility, but increased suspension stability. Spray-dried aggregates were smaller than freeze-dried, with improved suspension stability. These results indicated that microfluidization and drying determine the structure of pea globulin aggregates and their associated techno-functional properties. These findings are crucial for the preparation of plant protein powders in the food industry.


Subject(s)
Desiccation/methods , Freeze Drying/methods , Globulins/chemistry , Pisum sativum/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy , Particle Size , Powders , Pressure , Protein Stability , Protein Structure, Secondary , Solubility
8.
J Sci Food Agric ; 91(6): 1148-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21328361

ABSTRACT

BACKGROUND: There is considerable interest in recovering landraces as genetic resources and as raw materials in ecological production. Low-hydration bread, whose dough is submitted to a sheeting roll process, is commonly prepared in Spain and other countries. The aim of this study was to assess the adequacy of some landraces, compared with commercial cultivars and flours, for making this type of bread. Eight Spanish landraces, four wheat cultivars developed during the green revolution and three commercial flours were chosen, their alveographic and kneading behaviours were analysed and the characteristics of the resulting breads were determined. RESULTS: The best correlations were obtained in breads with improver. Flours with extreme alveographic behaviour differed markedly from the rest. When these flours were excluded from the analysis, the parameters best correlated with bread quality (when using improver) were strength, tenacity and development time. A significant correlation between flour colour, a genetic factor, and crumb colour was found. This correlation was higher in breads without improver. CONCLUSION When flours with extreme characteristics were removed, the protein quality characteristics of flours defined the quality characteristics of low-hydration breads.


Subject(s)
Bread/analysis , Crops, Agricultural/chemistry , Flour/analysis , Triticum/chemistry , Water/analysis , Chemical Phenomena , Color , Crops, Agricultural/genetics , Food Additives/chemistry , Food Handling , Genes, Plant , Spain , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...