Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 38(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30643021

ABSTRACT

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cystic Fibrosis/pathology , Epithelial Cells/pathology , Organ Culture Techniques/methods , Organoids/pathology , Respiratory Syncytial Virus Infections/pathology , Respiratory System/pathology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Drug Screening Assays, Antitumor , Epithelial Cells/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory System/metabolism , Xenograft Model Antitumor Assays
2.
iScience ; 2: 27-40, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-30428376

ABSTRACT

Communicating cells can coordinate their gene expressions to form spatial patterns, generating order from disorder. Ubiquitous "secrete-and-sense cells" secrete and sense the same molecule to do so. Here we present a modeling framework-based on cellular automata and mimicking approaches of statistical mechanics-for understanding how secrete-and-sense cells with bistable gene expression, from disordered beginnings, can become spatially ordered by communicating through rapidly diffusing molecules. Classifying lattices of cells by two "macrostate" variables-"spatial index," measuring degree of order, and average gene-expression level-reveals a conceptual picture: a group of cells behaves as a single particle, in an abstract space, that rolls down on an adhesive "pseudo-energy landscape" whose shape is determined by cell-cell communication and an intracellular gene-regulatory circuit. Particles rolling down the landscape represent cells becoming more spatially ordered. We show how to extend this framework to more complex forms of cellular communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...