Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Ecancermedicalscience ; 18: 1685, 2024.
Article in English | MEDLINE | ID: mdl-38566759

ABSTRACT

Introduction: The incidence of squamous carcinoma of the oropharynx (OPSCC) has presented an increase worldwide, a fact that occurs along with a phenomenon of epidemiological transition, whose pathogenesis is linked to human papilloma virus (HPV) in a significant part of the cases. Published evidence at the Latin American level is scarce. The present study aims to evaluate the epidemiological and clinical characteristics of patients with oropharyngeal cancer treated in a public oncology reference centre in Chile. Methodology: A cross-sectional study was carried out. Patients with histological confirmation of OPSCC aged 18 years or older, referred to the National Cancer Institute of Chile between 2012 and 2023 were included. The association with HPV was determined by immunohistochemistry for p16. Results: 178 patients were analysed, most of them in locoregionally advanced stages involving the palatine tonsil. Seventy-seven percent were male, with a median age of 60 years. Sixty-seven percent of patients were positive for p16, with a progressive increase to 85% in the last 2 years of the study. The p16(+) patients were younger and had fewer classical risk factors. Primary treatment was radiotherapy in 94% of patients. Conclusion: The epidemiological profile of patients with OPSCC treated in a Chilean public oncology referral centre reflects the epidemiological transition observed in developed countries. This change justifies the need to adapt health policies and conduct research that considers the characteristics of this new epidemiological profile.

2.
Front Aging Neurosci ; 15: 1250342, 2023.
Article in English | MEDLINE | ID: mdl-37810621

ABSTRACT

Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.

3.
Biology (Basel) ; 12(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37237486

ABSTRACT

High-risk human papillomaviruses (HR-HPVs) are the causal agents of cervical, anogenital and a subset of head and neck carcinomas (HNCs). Indeed, oropharyngeal cancers are a type of HNC highly associated with HR-HPV infections and constitute a specific clinical entity. The oncogenic mechanism of HR-HPV involves E6/E7 oncoprotein overexpression for promoting cell immortalization and transformation, through the downregulation of p53 and pRB tumor suppressor proteins, among other cellular targets. Additionally, E6/E7 proteins are involved in promoting PI3K/AKT/mTOR signaling pathway alterations. In this review, we address the relationship between HR-HPV and PI3K/AKT/mTOR signaling pathway activation in HNC with an emphasis on its therapeutic importance.

4.
Int J Mol Sci ; 24(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37108069

ABSTRACT

Even though epidemiological studies suggest that tobacco smoking and high-risk human papillomavirus (HR-HPV) infection are mutually exclusive risk factors for developing head and neck cancer (HNC), a portion of subjects who develop this heterogeneous group of cancers are both HPV-positive and smokers. Both carcinogenic factors are associated with increased oxidative stress (OS) and DNA damage. It has been suggested that superoxide dismutase 2 (SOD2) can be independently regulated by cigarette smoke and HPV, increasing adaptation to OS and tumor progression. In this study, we analyzed SOD2 levels and DNA damage in oral cells ectopically expressing HPV16 E6/E7 oncoproteins and exposed to cigarette smoke condensate (CSC). Additionally, we analyzed SOD2 transcripts in The Cancer Genome Atlas (TCGA) Head and Neck Cancer Database. We found that oral cells expressing HPV16 E6/E7 oncoproteins exposed to CSC synergistically increased SOD2 levels and DNA damage. Additionally, the SOD2 regulation by E6, occurs in an Akt1 and ATM-independent manner. This study suggests that HPV and cigarette smoke interaction in HNC promotes SOD2 alterations, leading to increased DNA damage and, in turn, contributing to development of a different clinical entity.


Subject(s)
Cigarette Smoking , Head and Neck Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Human Papillomavirus Viruses , Human papillomavirus 16/metabolism , Papillomavirus Infections/complications , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , DNA Damage , Head and Neck Neoplasms/complications
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674622

ABSTRACT

In Octodon degus, the aging process is not equivalent between sexes and worsens for females. To determine the beginning of detrimental features in females and the ways in which to improve them, we compared adult females (36 months old) and aged females (72 months old) treated with Andrographolide (ANDRO), the primary ingredient in Andrographis paniculata. Our behavioral data demonstrated that age does not affect recognition memory and preference for novel experiences, but ANDRO increases these at both ages. Sociability was also not affected by age; however, social recognition and long-term memory were lower in the aged females than adults but were restored with ANDRO. The synaptic physiology data from brain slices showed that adults have more basal synaptic efficiency than aged degus; however, ANDRO reduced basal activity in adults, while it increased long-term potentiation (LTP). Instead, ANDRO increased the basal synaptic activity and LTP in aged females. Age-dependent changes were also observed in synaptic proteins, where aged females have higher synaptotagmin (SYT) and lower postsynaptic density protein-95 (PSD95) levels than adults. ANDRO increased the N-methyl D-aspartate receptor subtype 2B (NR2B) at both ages and the PSD95 and Homer1 only in the aged. Thus, females exposed to long-term ANDRO administration show improved complex behaviors related to age-detrimental effects, modulating mechanisms of synaptic transmission, and proteins.


Subject(s)
Diterpenes , Octodon , Animals , Female , Octodon/metabolism , Brain/metabolism , Diterpenes/pharmacology , Diterpenes/metabolism , Recognition, Psychology
7.
Curr Vasc Pharmacol ; 20(3): 221-229, 2022.
Article in English | MEDLINE | ID: mdl-35864795

ABSTRACT

Glycine Receptors (GlyRs) are cell-surface transmembrane proteins that belong to the Cysloop ligand-gated ion channels superfamily (Cys-loop LGICs). Functional glycine receptors are conformed only by α-subunits (homomeric channels) or by α- and ß-subunits (heteromeric channels). The role of glycine as a cytoprotective is widely studied. New information about glycine modulation of vascular endothelial cells (ECs) function emerged last year. Glycine and its receptors are recognized to play a role as neurovascular protectors by a mechanism that involves α2GlyRs. Interestingly, the expression of α2GlyRs reduces after stroke injury. However, glycine reverses the inhibition of α2GlyRs by a mechanism involving the VEGF/pSTAT3 signaling. On the other hand, consistent evidence has demonstrated that ECs participate actively in the innate and adaptive immunological response. We recently reported that GlyRs are modulated by interleukin-1ß, suggesting new perspectives to explain the immune modulation of vascular function in pathological conditions such as cerebrovascular stroke. In this work, we distinguish the role of glycine and the allosteric modulation of glycine receptors as a new therapeutic target to confront post-ischemic injury.


Subject(s)
Ligand-Gated Ion Channels , Receptors, Glycine , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Glycine/metabolism , Glycine/pharmacology , Glycine/therapeutic use , Humans , Interleukin-1beta/metabolism , Ligand-Gated Ion Channels/metabolism , Receptors, Glycine/metabolism , Vascular Endothelial Growth Factor A/metabolism
8.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806360

ABSTRACT

Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1ß (IL-1ß) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary ß-subunit of GlyR (ßGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1ß in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1ß (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.


Subject(s)
Central Amygdaloid Nucleus , Neuralgia , Animals , Central Amygdaloid Nucleus/metabolism , Hyperalgesia/metabolism , Interleukin-1beta/metabolism , Male , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Glycine/metabolism
9.
Viruses ; 14(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35746684

ABSTRACT

High-risk human papillomaviruses (HR-HPV) are the causal agents of an important subset of oropharyngeal cancers that has increased considerably in incidence in recent years. In this study, we evaluated the presence of HPV in 49 oropharyngeal cancers from Chilean subjects. The presence of HPV DNA was analyzed by conventional PCR, the genotypes were identified through sequencing, and the expression of E6/E7 transcripts was evaluated by a reverse transcriptase polymerase chain reaction (RT-PCR). Additionally, to determine p16 expression-a surrogate marker for oncogenic HPV infection-a tissue array was constructed for immunohistochemistry (IHC). HPV was detected in 61.2% of oropharyngeal carcinomas, the most prevalent genotype being HPV16 (80%). E6 and E7 transcripts were detected in 91.6% and 79.1% of the HPV16-positive specimens, respectively, demonstrating functional HPV infections. Furthermore, p16 expression was positive in 58.3% of cases. These findings show a high prevalence of HR-HPV in oropharyngeal tumors from Chile, suggesting the necessity of additional studies to address this growing public health concern.


Subject(s)
Alphapapillomavirus , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oncogene Proteins, Viral , Oropharyngeal Neoplasms , Papillomavirus Infections , Alphapapillomavirus/genetics , Chile/epidemiology , Cyclin-Dependent Kinase Inhibitor p16/analysis , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA, Viral/analysis , DNA, Viral/genetics , Humans , Oncogene Proteins, Viral/genetics , Oropharyngeal Neoplasms/metabolism , Papillomaviridae/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomavirus Infections/metabolism , RNA, Viral/genetics
10.
Front Integr Neurosci ; 16: 799147, 2022.
Article in English | MEDLINE | ID: mdl-35295186

ABSTRACT

Octodon degus are a diurnal long-lived social animal widely used to perform longitudinal studies and complex cognitive tasks to test for physiological conditions with similitude in human behavior. They show a complex social organization feasible to be studied under different conditions and ages. Several aspects in degus physiology demonstrated that these animals are susceptible to environmental conditions, such as stress, fear, feeding quality, and isolation. However, the relevance of these factors in life of this animal depends on sex and age. Despite its significance, there are few studies with the intent to characterize neurological parameters that include these two parameters. To determine the basal neurophysiological status, we analyzed basic electrophysiological parameters generated during basal activity or synaptic plasticity in the brain slices of young and aged female and male degus. We studied the hippocampal circuit of animals kept in social ambient in captivity under controlled conditions. The study of basal synaptic activity in young animals (12-24 months old) was similar between sexes, but female degus showed more efficient synaptic transmission than male degus. We found the opposite in aged animals (60-84 months old), where male degus had a more efficient basal transmission and facilitation index than female degus. Furthermore, female and male degus develop significant but not different long-term synaptic plasticity (LTP). However, aged female degus need to recruit twice as many axons to evoke the same postsynaptic activity as male degus and four times more when compared to young female degus. These data suggest that, unlike male degus, the neural status of aged female degus change, showing less number or functional axons available at advanced ages. Our data represent the first approach to incorporate the effect of sex along with age progression in basal neural status.

11.
Front Integr Neurosci ; 15: 719076, 2021.
Article in English | MEDLINE | ID: mdl-34526882

ABSTRACT

Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.

12.
Sci Rep ; 11(1): 7395, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795747

ABSTRACT

Wnt signaling plays a key role in neurodevelopment and neuronal maturation. Specifically, Wnt5a stimulates postsynaptic assemblies, increases glutamatergic neurotransmission and, through calcium signaling, generates nitric oxide (NO). Trying to unveil the molecular pathway triggering these postsynaptic effects, we found that Wnt5a treatment induces a time-dependent increases in the length of the postsynaptic density (PSD), elicits novel synaptic contacts and facilitates F-actin flow both in in vitro and ex vivo models. These effects were partially abolished by the inhibition of the Heme-regulated eukaryotic initiation factor 2α (HRI) kinase, a kinase which phosphorylates the initiation translational factor eIF2α. When phosphorylated, eIF2α normally avoids the translation of proteins not needed during stress conditions, in order to avoid unnecessary energetic expenses. However, phosphorylated eIF2α promotes the translation of some proteins with more than one open reading frame in its 5' untranslated region. One of these proteins targeted by Wnt-HRI-eIF2α mediated translation is the GluN2B subunit of the NMDA receptor. The identified increase in GluN2B expression correlated with increased NMDA receptor function. Considering that NMDA receptors are crucial for excitatory synaptic transmission, the molecular pathway described here contributes to the understanding of the fast and plastic translational mechanisms activated during learning and memory processes.


Subject(s)
Hippocampus/growth & development , Protein Serine-Threonine Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Wnt-5a Protein/metabolism , 5' Untranslated Regions , Actins/metabolism , Animals , Culture Media, Conditioned , Gene Expression Regulation , Hippocampus/metabolism , Learning , Male , Memory , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Nitric Oxide/metabolism , Open Reading Frames , Phosphorylation , RNA, Small Interfering/metabolism , Signal Transduction , Synapses/metabolism , Synaptosomes/metabolism
13.
Front Pharmacol ; 12: 613105, 2021.
Article in English | MEDLINE | ID: mdl-33746753

ABSTRACT

Interleukin-1ß (IL-1ß) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1ß is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1ß may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) ß subunit (ßGlyR); however, no studies have evaluated the effect of IL-1ß on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1ß may modulate GlyR-mediated inhibitory activity via interactions with the ßGlyR subunit. Our results show that the application of IL-1ß (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1ß modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the ßGlyR subunit. The present results suggest that IL-1ß in the CeA controls glycinergic neurotransmission, possibly via interactions with the ßGlyR subunit. This effect could be relevant for understanding how IL-1ß released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.

14.
Neurobiol Stress ; 14: 100289, 2021 May.
Article in English | MEDLINE | ID: mdl-33426200

ABSTRACT

Loneliness affects group-living mammals triggering a cascade of stress-dependent physiological disorders. Indeed, social isolation stress is a major risk factor for several neuropsychiatric disorders including anxiety and depression. Furthermore, social isolation has a negative impact on health and fitness. However, the neurobiological consequences of long-term chronic social isolation stress (LTCSIS) manifested during the adulthood of affected individuals are not fully understood. Our study assessed the impact of LTCSIS and social buffering (re-socialization) on the behavioural performance and social-affective brain-related proteins in diurnal, social, and long-lived Octodon degus (degus). Thereby, anxiety-like and social behaviour, and social recognition memory were assessed in male and female animals subjected to a variety of stress-inducing treatments applied from post-natal and post-weaning until their adulthood. Additionally, we evaluated the relationship among LTCSIS, Oxytocin levels (OXT), and OXT-Ca2+-signalling proteins in the hypothalamus, the hippocampus, and the prefrontal cortex. Our findings suggest that LTCSIS induces anxiety like-behaviour and impairs social novelty preference whereas sociability is unaffected. On the other hand, re-socialization can revert both isolation-induced anxiety and social memory impairment. However, OXT and its signalling remained reduced in the abovementioned brain areas, suggesting that the observed changes in OXT-Ca2+ pathway proteins were permanent in male and female degus. Based on these findings, we conclude degus experience social stress differently, suggesting the existence of sex-related mechanisms to cope with specific adaptive challenges.

15.
J Med Chem ; 64(1): 812-839, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356266

ABSTRACT

The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aß42/Aß40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.


Subject(s)
Acetylcholinesterase/metabolism , Antioxidants/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Brain/drug effects , Brain/metabolism , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Oxidative Stress/drug effects , Structure-Activity Relationship , Tissue Distribution
16.
Sci Rep ; 10(1): 18315, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110163

ABSTRACT

Social isolation is considered a stressful situation that results in increased physiological reactivity to novel stimuli, altered behaviour, and impaired brain function. Here, we investigated the effects of long-term social isolation on working memory, spatial learning/memory, hippocampal synaptic transmission, and synaptic proteins in the brain of adult female and male Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects, makes it a unique animal model that can be highly applicable for further social, emotional, cognitive, and aging studies. These animals were socially isolated from post-natal and post-weaning until adulthood. We also evaluated if re-socialization would be able to compensate for reactive stress responses in chronically stressed animals. We showed that long-term social isolation impaired the HPA axis negative feedback loop, which can be related to cognitive deficits observed in chronically stressed animals. Notably, re-socialization restored it. In addition, we measured physiological aspects of synaptic transmission, where chronically stressed males showed more efficient transmission but deficient plasticity, as the reverse was true on females. Finally, we analysed synaptic and canonical Wnt signalling proteins in the hypothalamus, hippocampus, and prefrontal cortex, finding both sex- and brain structure-dependent modulation, including transient and permanent changes dependent on stress treatment.


Subject(s)
Brain/physiology , Cognition/physiology , Octodon/physiology , Social Isolation , Animals , Female , Hippocampus/physiology , Longitudinal Studies , Male , Memory, Short-Term/physiology , Octodon/psychology , Open Field Test/physiology , Social Isolation/psychology , Spatial Learning/physiology
17.
Cancers (Basel) ; 12(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781676

ABSTRACT

Cervical, anogenital, and some head and neck cancers (HNC) are etiologically associated with high-risk human papillomavirus (HR-HPV) infection, even though additional cofactors are necessary. Epidemiological studies have established that tobacco smoke (TS) is a cofactor for cervical carcinogenesis because women who smoke are more susceptible to cervical cancer when compared to non-smokers. Even though such a relationship has not been established in HPV-related HNC, a group of HPV positive patients with this malignancy are smokers. TS is a complex mixture of more than 4500 chemical compounds and approximately 60 of them show oncogenic properties such as benzo[α]pyrene (BaP) and nitrosamines, among others. Some of these compounds have been evaluated for carcinogenesis through experimental settings in collaboration with HR-HPV. Here, we conducted a comprehensive review of the suggested molecular mechanisms involved in cooperation with both HR-HPV and TS for epithelial carcinogenesis. Furthermore, we propose interaction models in which TS collaborates with HR-HPV to promote epithelial cancer initiation, promotion, and progression. More studies are warranted to clarify interactions between oncogenic viruses and chemical or physical environmental factors for epithelial carcinogenesis.

19.
Infect Agent Cancer ; 15: 4, 2020.
Article in English | MEDLINE | ID: mdl-32002023

ABSTRACT

BACKGROUND: The role of human polyomaviruses (HPyVs) in epithelial tumors such as head and neck carcinomas (HNSCCs) including oral and oropharyngeal carcinomas has not been established. In this study, we evaluated for the first time the presence of Merkel cell polyomavirus (MCPyV), BK human polyomavirus (BKPyV), and JC human polyomavirus (JCPyV) in HNSCCs from Chilean subjects. METHODS: One hundred and twenty HNSCCs were analyzed for the presence of MCPyV, BKPyV and JCPyV using real-time polymerase chain reaction procedures. In addition, 54 oral brushes from age- and sex-paired subjects were analyzed. RESULTS: Of the total of 120 HNSCCs, 15 were positive for MCPyV (12.5%). Only one case was positive for BKPyV (0.8%) and none for JCPyV (0%). In subjects without cancer, only one case (1.8%) resulted positive for MCPyV and none for JCPyV and BKPyV. MCPyV was associated with HNSCCs (p = 0.0239; OR = 7.571; 95% CI: 1.192-81.46). No association was found between age (p = 0.1996), gender (p = 0.7111) or differentiation status (p > 0.9999) and MCPyV presence in HNSCCs. CONCLUSIONS: MCPyVs were detected in HNSCCs from Chilean patients and were not detected in oral brushes from patients without cancer. More studies are warranted for defining an etiological role and clinical/molecular consequences of these viruses in HNSCCs.

20.
Front Cell Neurosci ; 13: 295, 2019.
Article in English | MEDLINE | ID: mdl-31379502

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia. The onset and progression of this pathology are correlated with several changes in the brain, including the formation of extracellular aggregates of amyloid-beta (Aß) peptide and the intracellular accumulation of hyperphosphorylated tau protein. In addition, dysregulated neuronal plasticity, synapse loss, and a reduction in cellular energy metabolism have also been described. Canonical Wnt signaling has also been shown to be downregulated in AD. Remarkably, we showed previously that the in vivo inhibition of Wnt signaling accelerates the appearance of AD markers in transgenic (Tg) and wild-type (WT) mice. Additionally, we found that Wnt signaling stimulates energy metabolism, which is critical for the ability of Wnt to promote the recovery of cognitive function in AD. Therefore, we hypothesized that activation of canonical Wnt signaling in a presymptomatic transgenic animal model of AD would improve some symptoms. To explore the latter, we used a transgenic mouse model (J20 Tg) with mild AD phenotype expression (high levels of amyloid aggregates) and studied the effect of andrographolide (ANDRO), an activator of canonical Wnt signaling. We found that presymptomatic administration of ANDRO in J20 Tg mice prevented the reduction in cellular energy metabolism markers. Moreover, treated animals showed improvement in cognitive performance. At the synaptic level, J20 Tg animals showed severe deficiencies in presynaptic function as determined by electrophysiological parameters, all of which were completely restored to normal by ANDRO administration. Finally, an analysis of hippocampal synaptosomes by electron microscopy revealed that the length of synapses was restored with ANDRO treatment. Altogether, these data support the idea that the activation of canonical Wnt signaling during presymptomatic stages could represent an interesting pharmacological strategy to delay the onset of AD.

SELECTION OF CITATIONS
SEARCH DETAIL