Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 128(8): 1499-1508, 2022 10 28.
Article in English | MEDLINE | ID: mdl-34776031

ABSTRACT

The ingestion of excess lipids often produces the accumulation of liver fat. The modulation of diet energy partition affects this process and other metabolic responses, and oestrogens and androgens are implied in this process. Ten-week-old male and female rats were fed with either standard rat chow (SD), SD enriched with coconut oil (high-fat diet, HF), SD enriched with protein (high-protein diet, HP) or a 'cafeteria' diet (CAF) for 1 month. HF and CAF diets provided the same lipid-derived percentage of energy (40 %), HP diet protein energy derived was twice (40 %) that of the SD. Animals were killed under anaesthesia and samples of blood and liver were obtained. Hepatic lipid content showed sex-related differences: TAG accumulation tended to increase in HF and CAF fed males. Cholesterol content was higher only in the CAF males. Plasma oestradiol in HF and HP males was higher than in CAF. Circulating cholesterol was inversely correlated with plasma oestradiol. These changes agreed with the differences in the expression of some enzymes related to lipid and energy metabolism, such as fatty acid synthetase or phosphoglycolate phosphatase. Oestrogen protective effects extend to males with 'normal' diets, that is, not unbalanced by either lipid or protein, but this protection was not enough against the CAF diet. Oestradiol seems to actively modulate the liver core of 2C-3C partition of energy substrates, regulating cholesterol deposition and lactate production.


Subject(s)
Fatty Liver , Metabolic Diseases , Rats , Male , Female , Animals , Estradiol , Fatty Liver/metabolism , Cholesterol , Proteins/metabolism , Liver/metabolism , Diet, High-Fat , Lipid Metabolism
2.
Mol Nutr Food Res ; 64(15): e2000265, 2020 08.
Article in English | MEDLINE | ID: mdl-32521082

ABSTRACT

SCOPE: Eating large amounts of fat is usually associated with fat accumulation. However, different types of diets (not only lipids) elicit different metabolic responses. METHODS AND RESULTS: Male and female rats (10 week-old) are distributed in four groups and fed for 1 month a standard diet (SD), or this diet enriched with either lipid (high-fat diet, HF) or protein (high-protein diet, HP), or a cafeteria diet (CAF). Both HF and CAF diets share the percentage of energy from lipids (40%) but these are different. Protein-derived energy in the HP diet is also 40%. Feeding SD, HF, and HP diets does not result in differences in energy intake, energy expenditure, total body weight, or lipid content. However, the CAF-fed groups show increases in these parameters, which are more marked in the male rats. The CAF diet increases the mass of adipose tissue while the HF diet does not. CONCLUSION: Different diets produce substantial changes in the fate of ingested nutrient energy. Dietary lipids are not essential for sustaining an increase in body lipid (or adipose tissue) content. Body protein accrual is unrelated to dietary lipids and overall energy intake. Both protein and lipid accrual are more efficient in male rats.


Subject(s)
Diet, High-Fat , Diet, High-Protein , Adipose Tissue , Animals , Dietary Fats/pharmacology , Dietary Proteins/pharmacology , Energy Intake , Energy Metabolism , Female , Lipid Metabolism , Lipids/analysis , Male , Rats, Wistar , Weight Gain
3.
Nutrients ; 11(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717282

ABSTRACT

Nitrogen balance studies have shown that a portion of the N ingested but not excreted is not accounted for. We compared several diets (standard, high-fat, high-protein, and self-selected cafeteria) to determine how diet-dependent energy sources affect nitrogen handling, i.e., the liver urea cycle. Diet components and rat homogenates were used for nitrogen, lipid, and energy analyses. Plasma urea and individual amino acids, as well as liver urea cycle enzyme activities, were determined. Despite ample differences in N intake, circulating amino acids remained practically unchanged in contrast to marked changes in plasma urea. The finding of significant correlations between circulating urea and arginine-succinate synthase and lyase activities supported their regulatory role of urea synthesis, the main N excretion pathway. The cycle operation also correlated with the food protein/energy ratio, in contraposition to total nitrogen losses and estimated balance essentially independent of dietary energy load. The different regulation mechanisms observed have potentially important nutritional consequences, hinting at nitrogen disposal mechanisms able to eliminate excess nitrogen under conditions of high availability of both energy and proteins. Their operation reduces urea synthesis to allow for a safe (albeit unknown) mechanism of N/energy excess accommodation.


Subject(s)
Diet/statistics & numerical data , Eating/physiology , Nitrogen Cycle/physiology , Nitrogen/metabolism , Urea/metabolism , Amino Acids/blood , Animals , Body Weight/physiology , Dietary Proteins/metabolism , Female , Liver/enzymology , Male , Rats , Rats, Wistar , Urea/blood
4.
PeerJ ; 5: e3697, 2017.
Article in English | MEDLINE | ID: mdl-28929011

ABSTRACT

BACKGROUND: Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. METHODS: Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K) were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF) diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. RESULTS: K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient's intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients' proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. CONCLUSIONS: The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large) increase in the diet's lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.

5.
PeerJ ; 3: e1101, 2015.
Article in English | MEDLINE | ID: mdl-26213657

ABSTRACT

Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower than those of plasma, even when expressed in molal units, and were practically nil in cafeteria-diet fed rats compared with controls; there was no effect of sex. Conclusions. RBC membrane glycosylation is a sensitive indicator of developing metabolic syndrome-related hyperglycemia, more sensitive than the general measurement of plasma or RBC protein glycosylation. The extensive glycosylation of blood proteins does not seem to be markedly affected by sex; and could be hardly justified from an assumedly sustained plasma hyperglycemia. The low levels of glucose found within RBC, especially in rats under the cafeteria diet, could hardly justify the extensive glycosylation of hemoglobin and the lack of differences with controls, which contained sizeable levels of intracellular glucose. Additional studies are needed to study the dynamics of glucose in vivo in the RBC to understand how such extensive protein glycosylation could take place.

6.
World J Gastroenterol ; 20(46): 17516-24, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25516666

ABSTRACT

AIM: To analyze the cytokine production by peripheral blood cells from cirrhotic patients with and without TLR4 D299G and/or T399I polymorphisms. METHODS: The study included nine patients with cirrhosis and TLR4 D299G and/or T399I polymorphisms, and 10 wild-type patients matched for age, sex and degree of liver failure. TLR4 polymorphisms were determined by sequence-based genotyping. Cytokine production by peripheral blood cells was assessed spontaneously and also after lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation. RESULTS: Patients with TLR4 polymorphisms had a higher incidence of previous hepatic encephalopathy than wild-type patients (78% vs 20%, P = 0.02). Spontaneous production of interleukin (IL)-6 and IL-10 was lower in patients with TLR4 polymorphisms than in wild-type patients [IL-6: 888.7 (172.0-2119.3) pg/mL vs 5540.4 (1159.2-26053.9) pg/mL, P < 0.001; IL-10: 28.7 (6.5-177.1) pg/mL vs 117.8 (6.5-318.1) pg/mL, P = 0.02]. However, the production of tumor necrosis factor-α, IL-6 and IL-10 after LPS and LTA stimulation was similar in the two groups. CONCLUSION: TLR4 polymorphisms were associated with a distinctive pattern of cytokine production in cirrhotic patients, suggesting that they play a role in the development of cirrhosis complications.


Subject(s)
Cytokines/metabolism , Leukocytes, Mononuclear/metabolism , Liver Cirrhosis/genetics , Polymorphism, Genetic , Toll-Like Receptor 4/genetics , Adult , Aged , Case-Control Studies , Cells, Cultured , Cytokines/immunology , Disease Progression , Female , Genetic Association Studies , Genetic Predisposition to Disease , Hepatic Encephalopathy/genetics , Hepatic Encephalopathy/immunology , Hepatic Encephalopathy/metabolism , Humans , Interleukin-10/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/pharmacology , Liver Cirrhosis/immunology , Liver Cirrhosis/metabolism , Male , Middle Aged , Phenotype , Teichoic Acids/pharmacology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...