Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 3(1): 118, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-36703455

ABSTRACT

Vapochromic behaviour of porous crystals is beneficial for facile and rapid detection of gaseous molecules without electricity. Toward this end, tailored molecular designs have been established for metal-organic, covalent-bonded and hydrogen-bonded frameworks. Here, we explore the hydrochromic chemistry of a van der Waals (VDW) porous crystal. The VDW porous crystal VPC-1 is formed from a novel aromatic dendrimer having a dibenzophenazine core and multibranched carbazole dendrons. Although the constituent molecules are connected via VDW forces, VPC-1 maintains its structural integrity even after desolvation. VPC-1 exhibits reversible colour changes upon uptake/release of water molecules due to the charge transfer character of the constituent dendrimer. Detailed structural analyses reveal that the outermost carbazole units alone are mobile in the crystal and twist simultaneously in response to water vapour. Thermodynamic analysis suggests that the sigmoidal water sorption is induced by the affinity alternation of the pore surface from hydrophobic to hydrophilic.

2.
J Org Chem ; 84(14): 8870-8885, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31240916

ABSTRACT

A series of donor-acceptor-acceptor (D-A-A) and donor-acceptor-donor (D-A-D) systems based on a pyrimidine π-spacer with various substituents at the C-2 position has been successfully prepared. The synthesis involved site-selective palladium cross-coupling reactions of chloropyrimidines with triorganoindium reagents and proceed in good yields and with atom economy. 4-(N,N-Diphenylamino)phenyl was chosen as the donor group and thien-2-yl dicyanovinylene as the acceptor one. The optical, vibrational, electrochemical, and density functional theory (DFT) calculations of these molecular systems were analyzed, and experimental values show the important role of the substituents at the C-2 position of the pyrimidine with stronger electron accepting ability, absorption in a wide range of UV/vis, acceptable fluorescence lifetime, and effective intramolecular charge transfer (ICT) properties. The ICT was observed in both series by the bathochromic shift on increasing the polarity of the solvent. In addition, DFT calculations found lower lowest unoccupied molecular orbitals of D-A-A molecules that suggest good electron ejection and transportation, being good properties for their application in various organic optoelectronic devices.

3.
J Colloid Interface Sci ; 465: 165-73, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26674232

ABSTRACT

Carbon quantum dots (CQDs) coated with poly(amidoamine) (PAMAM-NH2) dendrimer are prepared from folic acid and phosphoric acid under a hydrothermal procedure. The obtained nanoparticles are successfully used as fluorescent sensor for Pt(IV) (in the form of chloroplatinate ion). CQDs possess many attractive features including uniform dispersion with average size about 13nm for unmodified particles and, ∼30nm when they are coated with PAMAM-NH2 dendrimer. The synthesized nanoparticles have been characterized by elemental analysis, attenuated total reflectance (ATR), X-ray photoelectron (XPS) and Raman spectroscopies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and steady-state and life-time fluorescence. CQDs are used as fluorescent sensor of Pt(IV) ion in aqueous media showing linear quenching effect of their fluorescence. The results obtained demonstrated a limit of detection of 657nM with an accuracy of the method of 0.13% (as RSD, n=10) and sensitivity of 78nM. Moreover, with the presence of other interference species, good results are obtained when applied in real samples from platinum nanoparticles synthesis. The dissolved platinum ions can be quantified in the range 6-96µM with an accuracy of 2.5%.

4.
J Am Chem Soc ; 137(32): 10357-66, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26186503

ABSTRACT

Thiophene-based materials have occupied a crucial position in the development of organic electronics. However, the energy band gaps of oligo- and polythiophenes are difficult to modulate without resorting to push-pull electronic effects. We describe herein a new series of monodisperse oligo(thieno[3,4-b]thiophene) derivatives with well-defined regioregular structures synthesized efficiently by direct C-H arylation. These compounds show a unique palette of colors and amphoteric redox properties with widely tunable energy band gaps. The capacity to stabilize both cations and anions results in both anodic and cathodic electrochromism. Under excitation, these compounds can produce photoionized states able to interconvert into neutral triplet or form these through singlet exciton fission or intersystem crossing. These features arise from a progressive increase in quinoidization on a fully planar platform making the largest effective conjugation length among hetero-oligomers. Oligo(thieno[3,4-b]thiophene)s might represent the more distinctive family of oligothiophenes of this decade.

5.
Chemistry ; 21(2): 590-600, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25381747

ABSTRACT

In the present study, a biomimetic reaction center model, that is, a molecular triad consisting of a chlorin dimer and an azafulleroid, is synthesized and its photophysical properties are studied in comparison with the corresponding molecular dyad, which consists only of a chlorin monomer and an azafulleroid. As evidenced by (1) H NMR, UV/Vis, and fluorescence spectroscopy, the chlorin dimer-azafulleroid folds in nonpolar media into a C2 -symmetric geometry through hydrogen bonding, resulting in appreciable electronic interactions between the chlorins, whereas in polar media the two chlorins diverge from contact. Femtosecond transient absorption spectroscopy studies reveal longer charge-separated states for the chlorin dimer-azafulleroid; ≈1.6 ns in toluene, compared with the lifetime of ≈0.9 ns for the corresponding chlorin monomer-azafulleroid in toluene. In polar media, for example, benzonitrile, similar charge-separated states are observed, but the lifetimes are inevitably shorter: 65 and 73 ps for the dimeric and monomeric chlorin-azafulleroids, respectively. Nanosecond transient absorption and singlet oxygen phosphorescence studies corroborate that in toluene, the charge-separated state decays indirectly via the triplet excited state to the ground state, whereas in benzonitrile, direct recombination to the ground state is observed. Complementary DFT studies suggest two energy-minima conformations, that is, a folded chlorin dimer-azafulleroid, which is present in nonpolar media, and another conformation in polar media, in which the two hydrophobic chlorins wrap the azafulleroid. Inspection of the frontier molecular orbitals shows that in the folded conformation, the HOMO on each chlorin is equivalent and is shared owing to partial π-π overlap, resulting in delocalization of the conjugated π electrons, whereas the wrapped conformation lacks this stabilization. As such, the longer charge-separated lifetime for the dimer is rationalized by both the electron donor-acceptor separation distance and the stabilization of the radical cation through delocalization. The chlorin folding seems to change the photophysical properties in a manner similar to that observed in the chlorophyll dimer in natural photosynthetic reaction centers.


Subject(s)
Biomimetic Materials/chemistry , Fullerenes/chemistry , Porphyrins/chemistry , Chlorophyll/chemistry , Dimerization , Models, Molecular , Photosynthesis , Rhodopseudomonas/chemistry , Rhodopseudomonas/physiology
6.
Chemistry ; 16(23): 6866-76, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20437430

ABSTRACT

We have prepared a new series of mixed thiophene-pyrrole oligomers to investigate the electronic benefits arising from the combination of these two heterocycles. The oligomers are functionalized with several hexyl and aryl groups to improve both processability and chemical robustness. An analysis of their spectroscopic (absorption and emission), photophysical, electrochemical, solid state, and vibrational properties is performed in combination with quantum-chemical calculations. This analysis provides relevant information regarding the use of these materials as organic semiconductors. The balance between the high aromatic character of pyrrole and the moderate aromaticity of thiophene allows us to address the impact of the coupling of these heterocycles in conjugated systems. The data are interpreted on the basis of the aromaticity, molecular conformations, ground and excited electronic state structures, frontier orbital topologies and energies, oxidative states, and quinoidal versus aromatic competition.

7.
J Phys Chem B ; 111(16): 4026-35, 2007 Apr 26.
Article in English | MEDLINE | ID: mdl-17402773

ABSTRACT

An analysis is performed on the molecular and electronic features in a series of trigonal molecules constituted by a central truxene core which is ramified with three oligofluorene moieties of different lengths. Arms and core are studied independently and upon threefold unification. Special emphasis is paid to the modulation of the conjugational properties in relation to substitution, molecular dimension, ring aromaticity, intermolecular forces, oxidation state, etc. Raman and optical absorption/emission spectroscopies in conjunction with computational theoretical results are combined for this purpose. The evolution of some key intensity ratios in the Raman spectra (i.e., I(1300)/I(1235)) is followed as an indication of electronic interaction between the core and the branches. The changes of the electronic delocalization upon solvation, with varying temperature in the solid state, with the nature of the aromatic unit (bithiophene/fluorene) or after electrochemical oxidation are interpreted. The modulation of the optical properties on the basis of the structure and energetics of the orbital around the gap is also addressed. Density functional theory was used to assign the vibrational and electronic spectra.

8.
J Org Chem ; 71(20): 7509-20, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-16995653

ABSTRACT

A series of push-pull chromophores built around thiophene-based pi-conjugating spacers and bearing various types of amino donors and cyanovinyl acceptors have been analyzed by means of UV-vis-NIR, IR, and Raman spectroscopic measurements in the solid state as well as in solution. The intramolecular charge transfer (ICT) of these pi-conjugated systems has also been tested by analyzing the ability of the solute molecules to undergo shifts in their fluorescence emission maxima with increasing solvent polarity. These push-pull oligomers also display an attractive electrochemical behavior since they generate stable species both upon oxidation and reduction. Oxidation mainly involves changes in the electron-rich aminooligothienyl half-part of the molecule and leads to the formation of stable cations. On the other hand, reduction to radical anions and dianions is mainly cyanovinyl-centered but also affects the pi-conjugated electron relay. Density functional theory (DFT) calculations have been carried out to help the assignment of the most relevant electronic and vibrational features and to derive useful information about the molecular structure of these NLO-phores.

9.
J Phys Chem B ; 110(39): 19198-206, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17004769

ABSTRACT

The molecular and electronic structures of a series of all-meta-substituted phenylacetylene mesitylenes peripherally substituted with donor or acceptor (D-A) groups are studied. The impact of meta- and para-substitution patterns is also analyzed by employing Raman and optical spectroscopies in conjunction with theoretical calculations. Outer phenyl rings display a partial quinoid character induced by two different motifs: (i) outer phenyls --> triple bond charge transfer for the cases where these phenyls are substituted with electron-donors; (ii) double electron withdrawing effect in the molecules with the peripheral phenyls substituted with electron acceptors. A moderate tuning of the optical gap is observed in agreement with the partial blockade of pi-electron conjugation exerted by the meta disposition. The orbital structure of the compounds partially preserves that of the mesitylene group showing extra-conjugation due to the addition of the arms, so that conjugation is not entirely obstructed but partially impeded in the ground electronic state (i.e., electron occupied orbitals). As for the excited states, the low-lying energy empty orbitals offer better conditions for full conjugation over the whole molecular scaffold. Interesting optical properties such as overlapping centers along the lowest energy optical excitations and enhanced optical transparency with importance for the application of these materials in optoelectronics have been justified on the basis of the electronic structure. A greater degree of quinoidization, and more allowed pi-electron delocalization, over the entire molecule is recognized in the case of linear phenylacetylenes substituting in para positions the central core.

SELECTION OF CITATIONS
SEARCH DETAIL
...