Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 121: 89-99, 2019 04.
Article in English | MEDLINE | ID: mdl-30611923

ABSTRACT

Osteoporotic bone fractures reduce quality of life and drastically increase mortality. Minimally irradiating imaging techniques such as dual-energy X-ray absorptiometry (DXA) allow assessment of bone loss through the use of bone mineral density (BMD) as descriptor. Yet, the accuracy of fracture risk predictions remains limited. Recently, DXA-based 3D modelling algorithms were proposed to analyse the geometry and BMD spatial distribution of the proximal femur. This study hypothesizes that such approaches can benefit from finite element (FE)-based biomechanical analyses to improve fracture risk prediction. One hundred and eleven subjects were included in this study and stratified in two groups: (a) 62 fracture cases, and (b) 49 non-fracture controls. Side fall was simulated using a static peak load that depended on patient mass and height. Local mechanical fields were calculated based on relationships between tissue stiffness and BMD. The area under the curve (AUC) of the receiver operating characteristic method evaluated the ability of calculated biomechanical descriptors to discriminate fracture and control cases. The results showed that the major principal stress was better discriminator (AUC > 0.80) than the volumetric BMD (AUC ≤ 0.70). High discrimination capacity was achieved when the analysis was performed by bone type, zone of fracture and gender/sex (AUC of 0.91 for women, trabecular bone and trochanter area), and outcomes suggested that the trabecular bone is critical for fracture discrimination. In conclusion, 3D FE models derived from DXA scans might significantly improve the prediction of hip fracture risk; providing a new insight for clinicians to use FE simulations in clinical practice for osteoporosis management.


Subject(s)
Finite Element Analysis , Hip Fractures/metabolism , Algorithms , Bone Density/physiology , Cancellous Bone/metabolism , Humans , Quality of Life
2.
Int J Numer Method Biomed Eng ; : e3100, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29737037

ABSTRACT

The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...