Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 31(5): 107599, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375049

ABSTRACT

Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon.


Subject(s)
Embryonic Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/metabolism , Cell Differentiation/physiology , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...