Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Article in English | MEDLINE | ID: mdl-33479702

ABSTRACT

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Stearoyl-CoA Desaturase , Central Nervous System/metabolism , Humans , Lipogenesis , Stearoyl-CoA Desaturase/genetics , Tumor Microenvironment
2.
Leukemia ; 33(4): 981-994, 2019 04.
Article in English | MEDLINE | ID: mdl-30185934

ABSTRACT

In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin-Sca-1+c-kit+CD48-CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.


Subject(s)
Aminoquinolines/pharmacology , Autophagy , Drug Resistance, Neoplasm/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , Polyamines/pharmacology , Animals , Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured
3.
Nat Commun ; 8: 16031, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28685754

ABSTRACT

Tissue architecture contributes to pancreatic ductal adenocarcinoma (PDAC) phenotypes. Cancer cells within PDAC form gland-like structures embedded in a collagen-rich meshwork where nutrients and oxygen are scarce. Altered metabolism is needed for tumour cells to survive in this environment, but the metabolic modifications that allow PDAC cells to endure these conditions are incompletely understood. Here we demonstrate that collagen serves as a proline reservoir for PDAC cells to use as a nutrient source when other fuels are limited. We show PDAC cells are able to take up collagen fragments, which can promote PDAC cell survival under nutrient limited conditions, and that collagen-derived proline contributes to PDAC cell metabolism. Finally, we show that proline oxidase (PRODH1) is required for PDAC cell proliferation in vitro and in vivo. Collectively, our results indicate that PDAC extracellular matrix represents a nutrient reservoir for tumour cells highlighting the metabolic flexibility of this cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Collagen/metabolism , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Proline Oxidase/genetics , Proline/metabolism , Animals , Biological Transport , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Collagen/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Neoplasm Transplantation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Proline Oxidase/metabolism , Signal Transduction
4.
Int J Cancer ; 138(4): 787-96, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-25732227

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a debilitating and almost universally fatal malignancy. Despite advances in understanding of the oncogenetics of the disease, very few clinical benefits have been shown. One of the main characteristics of PDAC is the tumor architecture where tumor cells are surrounded by a firm desmoplasia. By reducing vascularization, thus both oxygen and nutrients delivery to the tumor, this stroma causes the appearance of hypoxic zones driving metabolic adaptation in surviving tumor cells in order to cope with challenging conditions. This metabolic reprogramming promoted by environmental constraints enhances PDAC aggressiveness. In this review, we provide a brief overview of previous works regarding the importance of glucose and glutamine addiction of PDAC cells. In particular we aim to highlight the need for exploring the impact of metabolites other than glucose and glutamine, such as non-essential amino acids and oncometabolites, to find new treatments. We also discuss the need for progress in methodology for metabolites detection. The overall purpose of our review is to emphasize the need to look beyond what is currently known, with a focus on amino acid availability, in order to improve our understanding of PDAC biology.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans
5.
Semin Cell Dev Biol ; 43: 52-64, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26365277

ABSTRACT

The acknowledgement that metabolic reprogramming is a central feature of cancer has generated high expectations for major advances in both diagnosis and treatment of malignancies through addressing metabolism. These have so far only been partially fulfilled, with only a few clinical applications. However, numerous diagnostic and therapeutic compounds are currently being evaluated in either clinical trials or pre-clinical models and new discoveries of alterations in metabolic genes indicate future prognostic or other applicable relevance. Altogether, these metabolic approaches now stand alongside other available measures providing hopes for the prospects of metabolomics in the clinic. Here we present a comprehensive overview of both ongoing and emerging clinical, pre-clinical and technical strategies for exploiting unique tumour metabolic traits, highlighting the current promises and anticipations of research in the field.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Energy Metabolism/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Energy Metabolism/physiology , Humans , Metabolomics , Neoplasms/pathology
6.
Proc Natl Acad Sci U S A ; 112(8): 2473-8, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25675507

ABSTRACT

The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Cholesterol/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Animals , Cell Compartmentation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Clone Cells , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Humans , Lipoproteins/metabolism , MAP Kinase Signaling System/drug effects , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Phenotype , Prognosis , Receptors, LDL/genetics , Receptors, LDL/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , Gemcitabine , Pancreatic Neoplasms
7.
Proc Natl Acad Sci U S A ; 110(10): 3919-24, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23407165

ABSTRACT

Pancreatic ductal adenocarcinoma is one of the most intractable and fatal cancer. The decreased blood vessel density displayed by this tumor not only favors its resistance to chemotherapy but also participates in its aggressiveness due to the consequent high degree of hypoxia. It is indeed clear that hypoxia promotes selective pressure on malignant cells that must develop adaptive metabolic responses to reach their energetic and biosynthetic demands. Here, using a well-defined mouse model of pancreatic cancer, we report that hypoxic areas from pancreatic ductal adenocarcinoma are mainly composed of epithelial cells harboring epithelial-mesenchymal transition features and expressing glycolytic markers, two characteristics associated with tumor aggressiveness. We also show that hypoxia increases the "glycolytic" switch of pancreatic cancer cells from oxydative phosphorylation to lactate production and we demonstrate that increased lactate efflux from hypoxic cancer cells favors the growth of normoxic cancer cells. In addition, we show that glutamine metabolization by hypoxic pancreatic tumor cells is necessary for their survival. Metabolized glucose and glutamine converge toward a common pathway, termed hexosamine biosynthetic pathway, which allows O-linked N-acetylglucosamine modifications of proteins. Here, we report that hypoxia increases transcription of hexosamine biosynthetic pathway genes as well as levels of O-glycosylated proteins and that O-linked N-acetylglucosaminylation of proteins is a process required for hypoxic pancreatic cancer cell survival. Our results demonstrate that hypoxia-driven metabolic adaptive processes, such as high glycolytic rate and hexosamine biosynthetic pathway activation, favor hypoxic and normoxic cancer cell survival and correlate with pancreatic ductal adenocarcinoma aggressiveness.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Glycolysis , Hypoxia/metabolism , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Survival , Disease Models, Animal , Glutamine/metabolism , Hexosamines/biosynthesis , Humans , Lactic Acid/metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Nude , Mice, Transgenic , Models, Biological , Pancreatic Neoplasms/pathology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...