Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 17(20): e202200367, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36068174

ABSTRACT

Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.


Subject(s)
Coordination Complexes , Mustard Gas , Transition Elements , Humans , Schiff Bases/pharmacology , Coordination Complexes/pharmacology , Cisplatin/pharmacology , Metals , Ligands
2.
Molecules ; 26(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34299501

ABSTRACT

Xyleborus sp beetles are types of ambrosia beetles invasive to the United States and recently also to Mexico. The beetle can carry a fungus responsible for the Laurel Wilt, a vascular lethal disease that can host over 300 tree species, including redbay and avocado. This problem has a great economic and environmental impact. Indeed, synthetic chemists have recently attempted to develop new neonicotinoids. This is also due to severe drug resistance to "classic" insecticides. In this research, a series of neonicotinoids analogs were synthesized, characterized, and evaluated against Xyleborus sp. Most of the target compounds showed good to excellent insecticidal activity. Generally, the cyclic compounds also showed better activity in comparison with open-chain compounds. Compounds R-13, 23, S-29, and 43 showed a mortality percent of up to 73% after 12 h of exposure. These results highlight the enantioenriched compounds with absolute R configuration. The docking results correlated with experimental data which showed both cation-π interactions in relation to the aromatic ring and hydrogen bonds between the search cavity 3C79 and the novel molecules. The results suggest that these sorts of interactions are responsible for high insecticidal activity.


Subject(s)
Coleoptera/drug effects , Insecticides/chemical synthesis , Insecticides/pharmacology , Neonicotinoids/chemical synthesis , Neonicotinoids/pharmacology , Weevils/drug effects , Ambrosia/parasitology , Animals , Coleoptera/microbiology , Ericaceae/parasitology , Fungi/pathogenicity , Hydrogen Bonding/drug effects , Plant Diseases/microbiology , Trees/parasitology , Weevils/microbiology
3.
RSC Adv ; 11(50): 31260-31271, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496885

ABSTRACT

The synthesis of six Mannich bases derived from hydroxycoumarins was carried out in moderate yields, two of these derivatives were described for the first time. Conformational analysis was performed through DFT theoretical calculations explaining the formation of stable six membered rings based on intramolecular hydrogen bonds within the structure. These findings were correlated with the antiproliferative activity. The biological activity of the Mannich bases through their antiproliferative activity in the HeLa cancer cell line is described for the first time, showing that the compounds were able to inhibit proliferation in cervical cancer by more than 60%. Likewise, the theoretical modeling of the photophysical properties was realized with promising results, showing that the HOMO-LUMO energies of the new compounds present the lowest electronic gap values for those with donor groups in their structure, which makes them potential fluorophores.

4.
Curr Org Synth ; 16(6): 913-920, 2019.
Article in English | MEDLINE | ID: mdl-31984912

ABSTRACT

BACKGROUND: Hafnium(IV) tetrachloride efficiently catalyzes the protection of a variety of aldehydes and ketones, including benzophenone, acetophenone, and cyclohexanone, to the corresponding dimethyl acetals and 1,3-dioxolanes, under microwave heating. Substrates possessing acid-labile protecting groups (TBDPS and Boc) chemoselectively generated the corresponding acetal/ketal in excellent yields. AIMS AND OBJECTIVES: In this study. the selective protection of aldehydes and ketones using a Hafnium(IV) chloride, which is a novel catalyst, under microwave heating was observed. Hence, it is imperative to find suitable conditions to promote the protection reaction in high yields and short reaction times. This study was undertaken not only to find a novel catalyst but also to perform the reaction with substrates bearing acid-labile protecting groups, and study the more challenging ketones as benzophenone. MATERIALS AND METHODS: Using a microwave synthesis reactor Monowave 400 of Anton Paar, the protection reaction was performed on a raging temperature of 100°C ±1, a pressure of 2.9 bar, and an electric power of 50 W. More than 40 substrates have been screened and protected, not only the aldehydes were protected in high yields but also the more challenging ketones such as benzophenone were protected. All the products were purified by simple flash column chromatography, using silica gel and hexanes/ethyl acetate (90:10) as eluents. Finally, the protected substrates were characterized by NMR 1H, 13C and APCI-HRMS-QTOF. RESULTS: Preliminary screening allowed us to find that 5 mol % of the catalyst is enough to furnish the protected aldehyde or ketone in up to 99% yield. Also it was found that substrates with a variety of substitutions on the aromatic ring (aldehyde or ketone), that include electron-withdrawing and electrondonating group, can be protected using this methodology in high yields. The more challenging cyclic ketones were also protected in up to 86% yield. It was found that trimethyl orthoformate is a very good additive to obtain the protected acetophenone. Finally, the protection of aldehydes with sensitive functional groups was performed. Indeed, it was found that substrates bearing acid labile groups such as Boc and TBDPS, chemoselectively generated the corresponding acetal/ketal compound while keeping the protective groups intact in up to 73% yield. CONCLUSION: Hafnium(IV) chloride as a catalyst provides a simple, highly efficient, and general chemoselective methodology for the protection of a variety of structurally diverse aldehydes and ketones. The major advantages offered by this method are: high yields, low catalyst loading, air-stability, and non-toxicity.


Subject(s)
Acetals/chemical synthesis , Aldehydes/chemistry , Hafnium/chemistry , Ketones/chemistry , Catalysis , Heating , Microwaves
SELECTION OF CITATIONS
SEARCH DETAIL
...