Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 58(46): 4632-4640, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31638376

ABSTRACT

The mature forms of the TGF-ß family members GDF-11 and GDF-8 are highly similar 25 kDa homodimers with 90% amino acid sequence identity and 99% similarity. Cross-reactivity of GDF-11 and GDF-8 binding reagents is common, making it difficult to attribute distinct roles of these two proteins in biology. We report the selection of GDF-11 and GDF-8 specific SOMAmer (Slow Off-rate Modified Aptamer) reagents aided by a combination of positive selection for one protein coupled with counter-selection against the other. We identified GDF-11 specific SOMAmer reagents from four modified DNA libraries that showed a high affinity (Kd range 0.05-1.2 nM) for GDF-11 but did not bind to GDF-8 (Kd > 1 µM). Conversely, we identified one SOMAmer reagent for GDF-8 from one of the modified libraries that demonstrated excellent affinity (Kd = 0.23 nM) and specificity. In contrast, standard protocols that utilized only positive selection produced binding reagents with similar affinity for both proteins. High affinity and specificity were efficiently encoded in minimal sequences of 21 nucleotides for GDF-11 and 24 nucleotides for GDF-8. Further characterization in pull-down, competition, sandwich-binding, and kinetic studies revealed robust binding under a wide range of buffer and assay conditions. For highly similar proteins like GDF-11 and GDF-8, our method of selection coupled with counter-selection was essential for identification of high-affinity, specific reagents that have the potential to elucidate the fundamental distinction of these growth factors in biology.


Subject(s)
Aptamers, Nucleotide/chemistry , Bone Morphogenetic Proteins/analysis , Growth Differentiation Factors/analysis , Myostatin/analysis , Amino Acid Sequence , Base Sequence , Binding Sites , Epitopes/analysis , Humans , Indicators and Reagents , Recombinant Proteins/analysis , SELEX Aptamer Technique
3.
Anal Chem ; 88(17): 8385-9, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27529794

ABSTRACT

Slow off-rate modified aptamers (SOMAmers) are attractive protein recognition reagents due to their high binding affinities, stable chemical structures, easy production, and established selection process. Here, biotinylated SOMAmer reagents were incorporated into single molecule array (Simoa)-based assays in place of traditional detection antibodies for six cytokine targets. Optimization and validation were conducted for TNF-α as a demonstration using a capture antibody/detection-SOMAmer detection scheme to highlight the performance of this approach. The optimized assay has a broad dynamic range (>4 log10 units) and an ultralow detection limit of 0.67 fM (0.012 pg/mL). These results show comparable sensitivity to our antibody pair-based Simoa assays, and tens to thousands-fold enhancement in sensitivity compared with conventional ELISAs. High recovery percentages were observed in a spike-recovery test using human sera, demonstrating the feasibility of this novel Simoa assay in detecting TNF-α in clinically relevant samples. Detection SOMAmers were also used to detect other cytokines, such as IFN-γ, IL-1ß, IL-2, IL-6, and IL-10, in human samples. Although not yet demonstrated, in principle it should be possible to eventually replace both the capture and detector antibodies with corresponding SOMAmer pairs in sandwich immunoassays. The combination of the ultrasensitive Simoa platform with the higher reliability of SOMAmer binding reagents will greatly benefit both biomarker discovery and disease diagnostic fields.


Subject(s)
Aptamers, Nucleotide/chemistry , Cytokines/blood , Indicators and Reagents/chemistry , Antibodies/immunology , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Kinetics
4.
Biol Reprod ; 85(4): 763-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21653894

ABSTRACT

In the adult testis, the precise control of the self-renewing replication and differentiation of stem spermatogonia is fundamental to male fertility. Previous studies have shown that the replication of A single (A(s)) spermatogonia, a population that includes the stem cells, is maximal at stage I of the cycle of the rat seminiferous epithelium and minimal at stage VII, while the ratio of A-paired spermatogonia to A(s) spermatogonia increases from stages I to VII. It has been hypothesized that these changes in A(s) spermatogonia replication and differentiation result from changes in the expression of glial cell-line derived neurotrophic factor (GDNF) by Sertoli cells. To directly test this hypothesis, we used immunocytochemistry and confocal microscopy to demonstrate that within intact seminiferous tubules, GDNF is detectable only in Sertoli cells and that its amount and its location within these cells changes with progression of the stages of the cycle. The identification of Sertoli cells as the primary source of GDNF was confirmed by RT-PCR analysis of RNA isolated from purified populations of Sertoli cells, pachytene spermatocytes, and round spermatids. Stage-specific changes in GDNF expression were confirmed by quantifying GDNF mRNA in seminiferous tubules at defined stages of the cycle. Expression of this transcript was maximal at stage I, fell 14-fold by stage VIIc,d, and then increased 12-fold by stages XIII-XIV. This pattern of expression was the opposite of the control, cathepsin L mRNA. Taken together, these data support the hypothesis that cyclical changes in GDNF expression by Sertoli cells are responsible for the stage-specific replication and differentiation of stem spermatogonia, the foundational cells of spermatogenesis.


Subject(s)
Adult Stem Cells/metabolism , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Sertoli Cells/metabolism , Spermatogenesis , Spermatogonia/metabolism , Adult Stem Cells/cytology , Animals , Cell Separation , Cells, Cultured , Immunohistochemistry , Male , Microscopy, Confocal , Protein Transport , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Seminiferous Epithelium/cytology , Seminiferous Epithelium/metabolism , Spermatids/cytology , Spermatids/metabolism , Spermatocytes/cytology , Spermatocytes/metabolism , Spermatogonia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...